Sensorimotor Integration: The Somatosensory System and Voluntary Movement

  • Toshiaki WasakaEmail author
  • Ryusuke Kakigi
Reference work entry


Motor control of one’s own movement requires sensory signals from the target body parts. The information about movement is provided by sensory feedback, as well as the integration of sensory information and motor commands, all of which are critical for motor control. Recent studies suggest that cortical activities related to sensory response and perception are modified by movement-execution mechanisms. However, this raises the question of how the system integrates motor command and sensory information while the intended movement is in progress. In this chapter, we review findings of sensorimotor integration and introduce results of our own studies using magnetoencephalography.


Corollary discharge Efference copy Motor command Somatosensory information Visual information 


  1. Allison T, McCarthy G, Wood CC, Jones SJ (1991) Potentials evoked in human and monkey cerebral cortex by stimulation of the median nerve. A review of scalp and intracranial recordings. Brain 114:2465–2503PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andersen RA, Snyder LH, Bradley DC, Xing J (1997) Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci 20:303–330PubMedCrossRefPubMedCentralGoogle Scholar
  3. Avikainen S, Forss N, Hari R (2002) Modulated activation of the human SI and SII cortices during observation of hand actions. NeuroImage 15(3):640–646PubMedCrossRefPubMedCentralGoogle Scholar
  4. Blakemore SJ, Goodbody SJ, Wolpert DM (1998) Predicting the consequences of our own actions: the role of sensorimotor context estimation. J Neurosci 18(18):7511–7518PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bocker KB, Forget R, Brunia CH (1993) The modulation of somatosensory evoked potentials during the foreperiod of a forewarned reaction time task. Electroencephalogr Clin Neurophysiol 88(2):105–117PubMedCrossRefPubMedCentralGoogle Scholar
  6. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391(6669):756PubMedCrossRefPubMedCentralGoogle Scholar
  7. Burton H, Abend NS, MacLeod AM, Sinclair RJ, Snyder AZ, Raichle ME (1999) Tactile attention tasks enhance activation in somatosensory regions of parietal cortex: a positron emission tomography study. Cereb Cortex 9(7):662–674PubMedCrossRefPubMedCentralGoogle Scholar
  8. Cardini F, Longo MR, Haggard P (2011) Vision of the body modulates somatosensory intracortical inhibition. Cereb Cortex 21(9):2014–2022PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cohen LG, Starr A (1987) Localization, timing and specificity of gating of somatosensory evoked potentials during active movement in man. Brain 108:103–121CrossRefGoogle Scholar
  10. Cohen LG, Starr A, Pratt H (1985) Cerebral somatosensory potentials evoked by muscle stretch, cutaneous taps and electrical stimulation of peripheral nerves in the lower limbs in man. Brain 110:451–467CrossRefGoogle Scholar
  11. Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA, Linenweber MR, Petersen SE, Raichle ME, Van Essen DC, Shulman G (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773PubMedCrossRefPubMedCentralGoogle Scholar
  12. Crapse TB, Sommer MA (2008) Corollary discharge circuits in the primate brain. Curr Opin Neurobiol 18(6):552–557PubMedPubMedCentralCrossRefGoogle Scholar
  13. Desmedt JE, Tomberg C (1989) Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P40, P100 and N140. Electroencephalogr Clin Neurophysiol 74(5):321–346PubMedCrossRefPubMedCentralGoogle Scholar
  14. Desmedt JE, Nguyen TH, Bourguet M (1987) Bit-mapped color imaging of human evoked potentials with reference to the N20, P22, P27 and N30 somatosensory responses. Electroencephalogr Clin Neurophysiol 68(1):1–19PubMedCrossRefPubMedCentralGoogle Scholar
  15. Eimer M, Forster B, Fieger A, Harbich S (2004) Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention. Clin Neurophysiol 115(3):596–608PubMedCrossRefPubMedCentralGoogle Scholar
  16. Farrer C, Franck N, Georgieff N, Frith CD, Decety J, Jeannerod M (2003) Modulating the experience of agency: a positron emission tomography study. NeuroImage 18(2):324–333PubMedCrossRefPubMedCentralGoogle Scholar
  17. Farrer C, Frey SH, Van Horn JD, Tunik E, Turk D, Inati S, Grafton ST (2008) The angular gyrus computes action awareness representations. Cereb Cortex 18(2):254–261PubMedPubMedCentralCrossRefGoogle Scholar
  18. Forss N, Jousmaki V (1998) Sensorimotor integration in human primary and secondary somatosensory cortices. Brain Res 781(1–2):259–267PubMedCrossRefPubMedCentralGoogle Scholar
  19. Fourneret P, Jeannerod M (1998) Limited conscious monitoring of motor performance in normal subjects. Neuropsychologia 36(11):1133–1140PubMedCrossRefPubMedCentralGoogle Scholar
  20. Fujiwara N, Imai M, Nagamine T, Mima T, Oga T, Takeshita K, Toma K, Shibasaki H (2002) Second somatosensory area (SII) plays a significant role in selective somatosensory attention. Brain Res Cogn Brain Res 14(3):389–397PubMedCrossRefPubMedCentralGoogle Scholar
  21. Garcia-Larrea L, Lukaszewicz AC, Mauguiere F (1995) Somatosensory responses during selective spatial attention: the N120-to-N140 transition. Psychophysiology 32(6):526–537PubMedCrossRefGoogle Scholar
  22. Graziano MSA (1999) Where is my arm? The relative role of vision and proprioception in the neuronal representation of limb position. Proc Natl Acad Sci U S A 96(18):10418–10421PubMedPubMedCentralCrossRefGoogle Scholar
  23. Hari R, Hamalainen H, Hamalainen M, Kekoni J, Sams M, Tiihonen J (1990) Separate finger representations at the human second somatosensory cortex. Neuroscience 37(1):245–249PubMedCrossRefPubMedCentralGoogle Scholar
  24. Hesse MD, Nishitani N, Fink GR, Jousmaki V, Hari R (2010) Attenuation of somatosensory responses to self-produced tactile stimulation. Cereb Cortex 20(2):425–432PubMedCrossRefPubMedCentralGoogle Scholar
  25. Hoshiyama M, Sheean G (1998) Changes of somatosensory evoked potentials preceding rapid voluntary movement in Go/No-go choice reaction time task. Brain Res Cogn Brain Res 7(2):137–142PubMedCrossRefPubMedCentralGoogle Scholar
  26. Huttunen J, Homberg V (1991) Modulation of cortical somatosensory evoked potentials durin active exploration and simple active movements. Electroencephalogr Clin Neurophysiol 81:216–223PubMedCrossRefPubMedCentralGoogle Scholar
  27. Huttunen J, Wikstrom H, Korvenoja A, Seppalainen AM, Aronen H, Ilmoniemi RJ (1996) Significance of the second somatosensory cortex in sensorimotor integration: enhancement of sensory responses during finger movements. Neuroreport 7(5):1009–1012PubMedCrossRefPubMedCentralGoogle Scholar
  28. Hyvarinen J, Poranen A, Jokinen Y (1980) Influence of attentive behavior on neuronal responses to vibration in primary somatosensory cortex of the monkey. J Neurophysiol 43(4):870–882PubMedCrossRefPubMedCentralGoogle Scholar
  29. Ikeda A, Luders HO, Burgess RC, Shibasaki H (1992) Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain 115:1017–1043PubMedCrossRefPubMedCentralGoogle Scholar
  30. Inoue K, Yamashita T, Harada T, Nakamura S (2002) Role of human SII cortices in sensorimotor integration. Clin Neurophysiol 113(10):1573–1578PubMedCrossRefPubMedCentralGoogle Scholar
  31. Inui K, Wang X, Qiu Y, Nguyen BT, Ojima S, Tamura Y, Nakata H, Wasaka T, Tran TD, Kakigi R (2003) Pain processing within the primary somatosensory cortex in humans. Eur J Neurosci 18(10):2859–2866PubMedCrossRefPubMedCentralGoogle Scholar
  32. Inui K, Wang X, Tamura Y, Kaneoke Y, Kakigi R (2004) Serial processing in the human somatosensory system. Cereb Cortex 14(8):851–857PubMedCrossRefPubMedCentralGoogle Scholar
  33. Iriki A, Tanaka M, Iwamura Y (1996) Attention-induced neuronal activity in the monkey somatosensory cortex revealed by pupillometrics. Neurosci Res 25(2):173–181PubMedCrossRefPubMedCentralGoogle Scholar
  34. Jiang W, Chapman CE, Lamarre Y (1990) Modulation of somatosensory evoked responses in the primary somatosensory cortex produced by intracortical microstimulation of the motor cortex in the monkey. Exp Brain Res 80(2):333–344PubMedCrossRefPubMedCentralGoogle Scholar
  35. Johansen-Berg H, Christensen V, Woolrich M, Matthews PM (2000) Attention to touch modulates activity in both primary and secondary somatosensory areas. Neuroreport 11(6):1237–1241PubMedCrossRefPubMedCentralGoogle Scholar
  36. Jones EG, Coulter JD, Hendry SH (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181(2):291–347PubMedCrossRefPubMedCentralGoogle Scholar
  37. Jones SJ, Halonen JP, Shawkat F (1989) Centrifugal and centripetal mechanisms involved in the ‘gating’ of cortical SEPs during movement. Electroencephalogr Clin Neurophysiol 74(1):36–45PubMedCrossRefPubMedCentralGoogle Scholar
  38. Kakigi R, Koyama S, Hoshiyama M, Watanabe S, Shimojo M, Kitamura Y (1995) Gating of somatosensory evoked responses during active finger movements magnetoencephalographic studies. J Neurol Sci 128(2):195–204PubMedCrossRefPubMedCentralGoogle Scholar
  39. Karnath HO, Baier B, Nagele T (2005) Awareness of the functioning of one’s own limbs mediated by the insular cortex? J Neurosci 25(31):7134–7138PubMedPubMedCentralCrossRefGoogle Scholar
  40. Kawamura T, Nakasato N, Seki K, Kanno A, Fujita S, Fujiwara S, Yoshimoto T (1996) Neuromagnetic evidence of pre- and post-central cortical sources of somatosensory evoked responses. Electroencephalogr Clin Neurophysiol 100(1):44–50PubMedCrossRefPubMedCentralGoogle Scholar
  41. Kida T, Nishihira Y, Wasaka T, Sakajiri Y, Tazoe T (2004) Differential modulation of the short- and long-latency somatosensory evoked potentials in a forewarned reaction time task. Clin Neurophysiol 115(10):2223–2230PubMedCrossRefPubMedCentralGoogle Scholar
  42. Kida T, Wasaka T, Inui K, Akatsuka K, Nakata H, Kakigi R (2006) Centrifugal regulation of human cortical responses to a task-relevant somatosensory signal triggering voluntary movement. NeuroImage 32(3):1355–1364PubMedCrossRefPubMedCentralGoogle Scholar
  43. Kida T, Inui K, Wasaka T, Akatsuka K, Tanaka E, Kakigi R (2007) Time-varying cortical activations related to visual-tactile cross-modal links in spatial selective attention. J Neurophysiol 97(5):3585–3596PubMedCrossRefPubMedCentralGoogle Scholar
  44. Knecht S, Kunesch E, Freund HJ (1993) Facilitation of somatosensory evoked potentials by exploratory finger movements. Exp Brain Res 95:330–338PubMedCrossRefPubMedCentralGoogle Scholar
  45. Lin YY, Simoes C, Forss N, Hari R (2000) Differential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses. NeuroImage 11(4):334–340PubMedCrossRefPubMedCentralGoogle Scholar
  46. Lin YY, Shih YH, Chen JT, Hsieh JC, Yeh TC, Liao KK, Kao CD, Lin KP, Wu ZA, Ho LT (2003) Differential effects of stimulus intensity on peripheral and neuromagnetic cortical responses to median nerve stimulation. NeuroImage 20(2):909–917PubMedCrossRefPubMedCentralGoogle Scholar
  47. Macaluso E, Frith CD, Driver J (2000) Modulation of human visual cortex by crossmodal spatial attention. Science 289(5482):1206–1208PubMedCrossRefPubMedCentralGoogle Scholar
  48. Mauguiere F, Merlet I, Forss N, Vanni S, Jousmaki V, Adeleine P, Hari R (1997) Activation of a distributed somatosensory cortical network in the human brain: a dipole modelling study of magnetic fields evoked by median nerve stimulation. Part II: effects of stimulus rate, attention and stimulus detection. Electroencephalogr Clin Neurophysiol 104(4):290–295PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mima T, Nagamine T, Nakamura K, Shibasaki H (1998) Attention modulates both primary and second somatosensory cortical activities in humans: a magnetoencephalographic study. J Neurophysiol 80(4):2215–2221PubMedCrossRefPubMedCentralGoogle Scholar
  50. Mottonen R, Jarvelainen J, Sams M, Hari R (2005) Viewing speech modulates activity in the left SI mouth cortex. NeuroImage 24(3):731–737PubMedCrossRefPubMedCentralGoogle Scholar
  51. Murase N, Kaji R, Shimazu H, Katayama-Hirota M, Ikeda A, Kohara N, Kimura J, Shibasaki H, Rothwell JC (2000) Abnormal premovement gating of somatosensory input in writer’s cramp. Brain 123:1813–1829PubMedCrossRefPubMedCentralGoogle Scholar
  52. Nakajima T, Wasaka T, Kida T, Nishimura Y, Fumoto M, Sakamoto M, Takashi E (2006) Changes in somatosensory evoked potentials and Hoffmann reflexes during fast isometric contraction of foot plantarflexor in humans. Percept Mot Skills 103(3):847–860PubMedCrossRefPubMedCentralGoogle Scholar
  53. Nakata H, Inui K, Wasaka T, Nishihira Y, Kakigi R (2003) Mechanisms of differences in gating effects on short- and long-latency somatosensory evoked potentials relating to movement. Brain Topogr 15(4):211–222PubMedCrossRefPubMedCentralGoogle Scholar
  54. Pihko E, Nangini C, Jousmaki V, Hari R (2010) Observing touch activates human primary somatosensory cortex. Eur J Neurosci 31(10):1836–1843PubMedCrossRefPubMedCentralGoogle Scholar
  55. Pons TP, Garraghty PE, Friedman DP, Mishkin M (1987) Physiological evidence for serial processing in somatosensory cortex. Science 237(4813):417–420PubMedCrossRefPubMedCentralGoogle Scholar
  56. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42PubMedCrossRefPubMedCentralGoogle Scholar
  57. Qiu Y, Inui K, Wang X, Nguyen BT, Tran TD, Kakigi R (2004) Effects of distraction on magnetoencephalographic responses ascending through C-fibers in humans. Clin Neurophysiol 115(3):636–646PubMedCrossRefPubMedCentralGoogle Scholar
  58. Rauch R, Angel RW, Boylls CC (1985) Velocity-dependent suppression of somatosensory evoked potentials during movement. Electroencephalogr Clin Neurophysiol 62:421–425PubMedCrossRefPubMedCentralGoogle Scholar
  59. Romo R, Hernandez A, Zainos A, Lemus L, Brody CD (2002) Neuronal correlates of decision-making in secondary somatosensory cortex. Nat Neurosci 5(11):1217–1225PubMedCrossRefPubMedCentralGoogle Scholar
  60. Rossi S, Tecchio F, Pasqualetti P, Ulivelli M, Pizzella V, Romani GL, Passero S, Battistini N, Rossini PM (2002) Somatosensory processing during movement observation in humans. Clin Neurophysiol 113(1):16–24PubMedCrossRefPubMedCentralGoogle Scholar
  61. Rushton DN, Rothwell JC, Craggs MD (1981) Gating of somatosensory evoked potentials during different kinds of movement in man. Brain 104(3):465–491PubMedCrossRefPubMedCentralGoogle Scholar
  62. Sakamoto M, Nakajima T, Wasaka T, Kida T, Nakata H, Endoh T, Nishihira Y, Komiyama T (2004) Load- and cadence-dependent modulation of somatosensory evoked potentials and soleus H-reflex during active leg pedaling in humans. Brain Res 1029:272–285PubMedCrossRefPubMedCentralGoogle Scholar
  63. Sambo CF, Gillmeister H, Forster B (2009) Viewing the body modulates neural mechanisms underlying sustained spatial attention in touch. Eur J Neurosci 30(1):143–150PubMedCrossRefPubMedCentralGoogle Scholar
  64. Schmidt RF, Schady WJ, Torebjork HE (1990) Gating of tactile input from the hand. I. Effects of finger movement. Exp Brain Res 79(1):97–102PubMedCrossRefGoogle Scholar
  65. Shadmehr R, Krakauer JW (2008) A computational neuroanatomy for motor control. Exp Brain Res 185(3):359–381PubMedPubMedCentralCrossRefGoogle Scholar
  66. Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43(6):482–489PubMedCrossRefPubMedCentralGoogle Scholar
  67. Staines WR, Graham SJ, Black SE, McIlroy WE (2002) Task-relevant modulation of contralateral and ipsilateral primary somatosensory cortex and the role of a prefrontal-cortical sensory gating system. NeuroImage 15(1):190–199PubMedCrossRefPubMedCentralGoogle Scholar
  68. Starr A, Cohen LG (1985) ‘Gating’ of somatosensory evoked potentials begins before the onset of voluntary movement in man. Brain Res 348(1):183–186PubMedCrossRefPubMedCentralGoogle Scholar
  69. Steinmetz PN, Roy A, Fitzgerald PJ, Hsiao SS, Johnson KO, Niebur E (2000) Attention modulates synchronized neuronal firing in primate somatosensory cortex. Nature 404(6774):187–190CrossRefPubMedGoogle Scholar
  70. Taylor-Clarke M, Kennett S, Haggard P (2002) Vision modulates somatosensory cortical processing. Curr Biol 12(3):233–236PubMedCrossRefPubMedCentralGoogle Scholar
  71. Torquati K, Pizzella V, Della Penna S, Franciotti R, Babiloni C, Rossini PM, Romani GL (2002) Comparison between SI and SII responses as a function of stimulus intensity. Neuroreport 13(6):813–819PubMedCrossRefPubMedCentralGoogle Scholar
  72. vanBeers RJ, Sittig AC, vanderGon JJD (1996) How humans combine simultaneous proprioceptive and visual position information. Exp Brain Res 111(2):253–261CrossRefGoogle Scholar
  73. von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip: Wechselwirkungen Zwischen Zentralnervensystem und Peripherie. Natursissenschaften 37:464–476CrossRefGoogle Scholar
  74. Wasaka T, Kakigi R (2012a) Conflict caused by visual feedback modulates activation in somatosensory areas during movement execution. NeuroImage 59(2):1501–1507PubMedCrossRefPubMedCentralGoogle Scholar
  75. Wasaka T, Kakigi R (2012b) The effect of unpredicted visual feedback on activation in the secondary somatosensory cortex during movement execution. BMC Neurosci 13(1):138PubMedPubMedCentralCrossRefGoogle Scholar
  76. Wasaka T, Hoshiyama M, Nakata H, Nishihira Y, Kakigi R (2003) Gating of somatosensory evoked magnetic fields during the preparatory period of self-initiated finger movement. NeuroImage 20(3):1830–1838PubMedCrossRefPubMedCentralGoogle Scholar
  77. Wasaka T, Nakata H, Akatsuka K, Kida T, Inui K, Kakigi R (2005a) Differential modulation in human primary and secondary somatosensory cortices during the preparatory period of self-initiated finger movement. Eur J Neurosci 22(5):1239–1247PubMedCrossRefPubMedCentralGoogle Scholar
  78. Wasaka T, Nakata H, Kida T, Kakigi R (2005b) Changes in the centrifugal gating effect on somatosensory evoked potentials depending on the level of contractile force. Exp Brain Res 166(1):118–125PubMedCrossRefPubMedCentralGoogle Scholar
  79. Wasaka T, Kida T, Kakigi R (2017) Facilitation of information processing in the primary somatosensory area in ball rotation task. Sci Rep 7:15507PubMedPubMedCentralCrossRefGoogle Scholar
  80. Wikstrom H, Huttunen J, Korvenoja A, Virtanen J, Salonen O, Aronen H, Ilmoniemi RJ (1996) Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex. Electroencephalogr Clin Neurophysiol 100(6):479–487PubMedCrossRefPubMedCentralGoogle Scholar
  81. Wolpert DM, Miall RC, Kawato M (1998) Internal models in the cerebellum. Trends Cogn Sci 2(9):338–347PubMedCrossRefPubMedCentralGoogle Scholar
  82. Zhang HQ, Murray GM, Turman AB, Mackie PD, Coleman GT, Rowe MJ (1996) Parallel processing in cerebral cortex of the marmoset monkey: effect of reversible SI inactivation on tactile responses in SII. J Neurophysiol 76(6):3633–3655PubMedCrossRefPubMedCentralGoogle Scholar
  83. Zhang HQ, Murray GM, Coleman GT, Turman AB, Zhang SP, Rowe MJ (2001) Functional characteristics of the parallel SI- and SII-projecting neurons of the thalamic ventral posterior nucleus in the marmoset. J Neurophysiol 85(5):1805–1822PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Nagoya Institute of TechnologyNagoyaJapan
  2. 2.Department of Integrative PhysiologyNational Institute for Physiological SciencesOkazakiJapan

Section editors and affiliations

  • Catherine Tallon-Baudry

There are no affiliations available

Personalised recommendations