Advertisement

Breakdown in Traffic Networks

  • Boris S. KernerEmail author
Reference work entry
Part of the Encyclopedia of Complexity and Systems Science Series book series (ECSSS)

Glossary

Bottleneck

Traffic breakdown leading to the onset of congestion in a traffic network occurs usually at a network bottleneck. Road bottlenecks are caused, for example, by on- and off-ramps, road gradients, roadworks, a decrease in the number of road lines (in the flow direction), traffic signal, etc.

Breakdown Minimization (BM) Principle

The BM principle states that the optimum of a traffic or transportation network with N bottlenecks is reached when dynamic traffic assignment, optimization, and control are performed in the network in such a way that the probability Pnet for the occurrence of traffic breakdown in at least one of the network bottlenecks during a given time interval Tob for observing traffic flow reaches the minimum possible value. The BM principle is equivalent to the maximization of the probability that during the time interval Tob, traffic breakdown occurs at none of the network bottlenecks.

Congested Traffic

Congested traffic is defined as a state of traffic...

Notes

Acknowledgments

I would like to thank Sergey Klenov and Hubert Rehborn for the help and useful suggestions. I thank our partners for their support in the projects “UR:BAN – Urban Space: User oriented assistance systems and network management” and “MEC-View – Object detection for automated driving based on Mobile Edge Computing,” funded by the German Federal Ministry of Economic Affairs and Energy.

Bibliography

Primary Literature

  1. Allsop RE, Bell MGH, Heydecker BG (eds) (2007) Transportation and traffic theory 2007. Elsevier Science Ltd, AmsterdamGoogle Scholar
  2. Banks JH (1989) Freeway speed-flow-concentration relationships: more evidence and interpretations (with discussion and closure). Transp Res Rec 1225:53–60Google Scholar
  3. Banks JH (1990) Two-capacity phenomenon at freeway bottlenecks: a basis for ramp metering? Transp Res Rec 1287:20–28Google Scholar
  4. Barlović R, Santen L, Schadschneider A, Schreckenberg M (1998) Metastable states in cellular automata for traffic flow. Eur Phys J B 5:793–800CrossRefGoogle Scholar
  5. Bell MGH, Iida Y (1997) Transportation network analysis. John Wiley & Sons, Incorporated, HobokenCrossRefGoogle Scholar
  6. Bellomo N, Coscia V, Delitala M (2002) On the mathematical theory of vehicular traffic flow I. Fluid dynamic and kinetic modelling. Math Mod Meth App Sc 12:1801–1843CrossRefMathSciNetzbMATHGoogle Scholar
  7. Bose A, Ioannou P (2003) Mixed manual/semi-automated traffic: a macroscopic analysis. Transp Res C 11:439–462CrossRefGoogle Scholar
  8. Brilon W, Zurlinden H (2004) Kapazität von Straßen als Zufallsgröße. Straßenverkehrstechnik 4:164Google Scholar
  9. Brilon W, Geistefeld J, Regler M (2005a) Reliability of freeway traffic flow: a stochastic concept of capacity. In: Mahmassani HS (ed) Transportation and traffic theory. Proceedings of the 16th international symposium on transportation and traffic theory. Elsevier, Amsterdam, pp 125–144Google Scholar
  10. Brilon W, Regler M, Geistefeld J (2005b) Zufallscharakter der Kapazität von Autobahnen und praktische Konsequenzen – Teil 1. Straßenverkehrstechnik 3:136Google Scholar
  11. Brockfeld E, Kühne RD, Skabardonis A, Wagner P (2003) Toward benchmarking of microscopic traffic flow models. Transp Res Rec 1852:124–129CrossRefGoogle Scholar
  12. Brockfeld E, Kühne RD, Wagner P (2005) Calibration and validation of simulation models. In: Proceeding of the transportation research board 84th annual meeting, TRB paper no. 05-2152. TRB, Washington, DCGoogle Scholar
  13. Cambridge Systematics, Inc (2001) Twin Cities ramp meter evaluation – final report. Cambridge Systematics, Inc., Oakland. Prepared for the Minnesota Department of TransportationGoogle Scholar
  14. Cassidy MJ, Skabardonis A (eds) (2011) Papers selected for the 19th international symposium on transportation and traffic theory. Procedia Soc Behav Sci 17:1–716Google Scholar
  15. Ceder A (ed) (1999) Transportation and traffic theory. In: Proceedings of the 14th international symposium on transportation and traffic theory. Elsevier Science Ltd, OxfordGoogle Scholar
  16. Chandler RE, Herman R, Montroll EW (1958) Traffic dynamics: studies in car following. Oper Res 6:165–184CrossRefMathSciNetGoogle Scholar
  17. Cheng H (2011) Autonomous intelligent vehicles: theory, algorithms, and implementation. Springer, BerlinCrossRefGoogle Scholar
  18. Chien CC, Zhang Y, Ioannou PA (1997) Traffic density control for automated highway systems. Automatica 33:1273–1285CrossRefMathSciNetzbMATHGoogle Scholar
  19. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199CrossRefMathSciNetGoogle Scholar
  20. Cremer M (1979) Der Verkehrsfluss auf Schnellstrassen. Springer, BerlinCrossRefGoogle Scholar
  21. Daganzo CF (1994) The cell-transmission model: a dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res B 28:269–287CrossRefGoogle Scholar
  22. Daganzo CF (1995) The cell transmission model, part II: network traffic. Transp Res B 29:79–93CrossRefGoogle Scholar
  23. Daganzo CF (1997) Fundamentals of transportation and traffic operations. Elsevier Science Inc., New YorkCrossRefGoogle Scholar
  24. Davis LC (2004) Effect of adaptive cruise control systems on traffic flow. Phys Rev E 69:066110CrossRefGoogle Scholar
  25. Davis LC (2007) Effect of adaptive cruise control systems on mixed traffic flow near an on-ramp. Physica A 379:274–290CrossRefGoogle Scholar
  26. Davis LC (2014) Nonlinear dynamics of autonomous vehicles with limits on acceleration. Physica A 405:128–139CrossRefMathSciNetzbMATHGoogle Scholar
  27. Dion F, Rakha H, Kang YS (2004) Comparison of delay estimates at under-saturated and over-saturated pre-timed signalized intersections. Transp Res B 38:99–122CrossRefGoogle Scholar
  28. Elefteriadou L (2014) An introduction to traffic flow theory, Springer optimization and its applications, vol 84. Springer, BerlinzbMATHGoogle Scholar
  29. Elefteriadou L, Roess RP, McShane WR (1995) Probabilistic nature of breakdown at freeway merge junctions. Transp Res Rec 1484:80–89Google Scholar
  30. Elefteriadou L, Kondyli A, Brilon W, Hall FL, Persaud B, Washburn S (2014) Enhancing ramp metering algorithms with the use of probability of breakdown models. J Transp Eng 140:04014003CrossRefGoogle Scholar
  31. Friesz TL, Bernstein D (2016) Foundations of network optimization and games, Complex networks and dynamic systems, vol 3. Springer, New York/BerlinzbMATHGoogle Scholar
  32. Fukui M, Sugiyama Y, Schreckenberg M, Wolf DE (eds) (2003) Traffic and granular flow’ 01. Springer, HeidelbergzbMATHGoogle Scholar
  33. Gartner NH (1983) OPAC: a demand-responsive strategy for traffic signal control. Transp Res Rec 906:75–81Google Scholar
  34. Gartner NH, Stamatiadis C (2002) Arterial-based control of traffic flow in urban grid networks. Math Comput Model Pergamon 35:657–671CrossRefMathSciNetzbMATHGoogle Scholar
  35. Gartner NH, Stamatiadis C (2009) Traffic networks, optimization and control of Urban. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp 9470–9500CrossRefGoogle Scholar
  36. Gartner NH, Messer CJ, Rathi A (eds) (2001) Traffic flow theory: a state-of-the-art report. Transportation Research Board, Washington, DCGoogle Scholar
  37. Gazis DC (2002) Traffic theory. Springer, BerlinzbMATHGoogle Scholar
  38. Gazis DC, Herman R, Potts RB (1959) Car-following theory of steady-state traffic flow. Oper Res 7:499–505CrossRefMathSciNetGoogle Scholar
  39. Gazis DC, Herman R, Rothery RW (1961) Nonlinear follow-the-leader models of traffic flow. Oper Res 9:545–567CrossRefMathSciNetzbMATHGoogle Scholar
  40. Gipps PG (1981) Behavioral car-following model for computer simulation. Transp Res B 15:105–111CrossRefGoogle Scholar
  41. Gipps PG (1986) A model for the structure of lane-changing decisions. Transp Res B 20:403–414CrossRefGoogle Scholar
  42. Grafton RB, Newell GF (1967) Optimal policies for the control of an undersaturated intersection. In: Edie LC, Herman R, Rothery R (eds) Vehicular traffic science. American Elsevier Publishing Company, New York, pp 239–257Google Scholar
  43. Greenshields BD, Bibbins JR, Channing WS, Miller HH (1935) A study of traffic capacity. Highw Res Board Proc 14:448–477Google Scholar
  44. Haight FA (1963) Mathematical theories of traffic flow. Academic, New YorkzbMATHGoogle Scholar
  45. Hall FL (1987) An interpretation of speed-flow-concentration relationships using catastrophe theory. Trans Res A 21:191–201CrossRefGoogle Scholar
  46. Hall FL (2001) Traffic stream characteristics. In: Gartner NH, Messer CJ, Rathi A (eds) Traffic flow theory: a state-of-the-art report. Transportation Research Board, Washington DC, pp 2-1–2-36Google Scholar
  47. Hall FL, Agyemang-Duah K (1991) Freeway capacity drop and the definition of capacity. Transp Res Rec 1320:91–98Google Scholar
  48. Hall FL, Hurdle VF, Banks JH (1992) Synthesis of recent work on the nature of speed-flow and flow-occupancy (or density) relationships on freeways. Transp Res Rec 1365:12–18Google Scholar
  49. Hegyi A, Bellemans T, De Schutter B (2017) Freeway traffic management and control. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, BerlinGoogle Scholar
  50. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067–1141CrossRefMathSciNetGoogle Scholar
  51. Helbing D, Herrmann HJ, Schreckenberg M, Wolf DE (eds) (2000) Traffic and granular flow’ 99. Springer, HeidelbergzbMATHGoogle Scholar
  52. Herman R, Montroll EW, Potts RB, Rothery RW (1959) Traffic dynamics: analysis of stability in car following. Oper Res 7:86–106CrossRefMathSciNetGoogle Scholar
  53. Highway Capacity Manual (2000) National Research Council, Transportation Research Boad, Washington, DCGoogle Scholar
  54. Highway Capacity Manual (2010) National Research Council, Transportation Research Boad, Washington, DCGoogle Scholar
  55. Hoogendoorn SP, Luding S, Bovy PHL, Schreckenberg M, Wolf DE (eds) (2005) Traffic and granular flow’ 03. Springer, HeidelbergGoogle Scholar
  56. Hoogendoorn SP, Knoop VL, van Lint H (eds) (2013) 20th international symposium on transportation and traffic theory (ISTTT 2013). Procedia Soc Behav Sci 80:1–996Google Scholar
  57. Hunt PB, Robertson DI, Bretherton RD, Winton RI (1981) SCOOT a traffic responsive method of coordinating signals. TRRL report no. LR 1014. Transportation and Road Research Laboratory, CrowthorneGoogle Scholar
  58. Ioannou PA, Chien CC (1993) Autonomous intelligent cruise control. IEEE Trans Veh Technol 42:657–672CrossRefGoogle Scholar
  59. ISO 15622 (2010) Intelligent transport systems – adaptive cruise control systems – performance requirements and test proceduresGoogle Scholar
  60. Kerner BS (1998a) Theory of congested traffic flow. In: Rysgaard R (ed) Proceedings of the 3rd symposium on highway capacity and level of service, vol 2. Road Directorate, Ministry of Transport, Denmark, pp 621–642Google Scholar
  61. Kerner BS (1998b) Empirical features of self-organization in traffic flow. Phys Rev Lett 81:3797–3400CrossRefzbMATHGoogle Scholar
  62. Kerner BS (1999a) Congested traffic flow: observations and theory. Transp Res Rec 1678:160–167CrossRefGoogle Scholar
  63. Kerner BS (1999b) Theory of congested traffic flow: self-organization without bottlenecks. In: Ceder A (ed) Transportation and traffic theory. Elsevier Science, Amsterdam, pp 147–171Google Scholar
  64. Kerner BS (1999c) The Physics of Traffic. Phys World 12:25–30CrossRefGoogle Scholar
  65. Kerner BS (2004a) The physics of traffic. Springer, Berlin/New YorkCrossRefGoogle Scholar
  66. Kerner BS (2004b) Verfahren zur Ansteuerung eines in einem Fahrzeug befindlichen verkehrsadaptiven Assistenzsystems, German patent publication DE 10308256A1. https://google.com/patents/DE10308256A1; Patent WO 2004076223A1 (2004) https://google.com/patents/WO2004076223A1; EU Patent EP 1597106B1 (2006); German patent DE 502004001669D1 (2006)
  67. Kerner BS (2005) Control of spatiotemporal congested traffic patterns at highway bottlenecks. Physica A 355:565–601CrossRefGoogle Scholar
  68. Kerner BS (2007a) Control of spatiotemporal congested patterns at highway bottlenecks. IEEE Trans ITS 8:308–320Google Scholar
  69. Kerner BS (2007b) On-ramp metering based on three-phase theory – part III. Traffic Eng Control 48:68–75Google Scholar
  70. Kerner BS (2007c) Three-phase traffic theory and its applications for freeway traffic control. In: Inweldi PO (ed) Transportation research trends. Nova Science Publishers, Inc., New York, pp 1–97Google Scholar
  71. Kerner BS (2007d) Method for actuating a traffic-adaptive assistance system which is located in a vehicle, USA patent US 20070150167A1. https://google.com/patents/US20070150167A1; USA patent US 7451039B2 (2008)
  72. Kerner BS (2007e) Betriebsverfahren für ein fahrzeugseitiges verkehrsadaptives Assistenzsystem, German patent publication DE 102007008253A1. https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE102007008253A1
  73. Kerner BS (2007f) Betriebsverfahren für ein fahrzeugseitiges verkehrsadaptives Assistenzsystem, German patent publication DE 102007008257A1. https://register.dpma.de/DPMAregister/pat/PatSchrifteneinsicht?docId=DE102007008257A1
  74. Kerner BS (2008) Betriebsverfahren für ein fahrzeugseitiges verkehrsadaptives Assisten-system, German patent publication DE 102007008254A1Google Scholar
  75. Kerner BS (2009) Introduction to modern traffic flow theory and control. Springer, Berlin/New YorkCrossRefzbMATHGoogle Scholar
  76. Kerner BS (2011a) Optimum principle for a vehicular traffic network: minimum probability of congestion. J Phys A Math Theor 44:092001CrossRefMathSciNetGoogle Scholar
  77. Kerner BS (2011b) Physics of traffic gridlock in a city. Phys Rev E 84:045102(R)CrossRefGoogle Scholar
  78. Kerner BS (2013a) Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory: a brief review. Physica A 392:5261–5282CrossRefMathSciNetzbMATHGoogle Scholar
  79. Kerner BS (2013b) The physics of green-wave breakdown in a city. Europhys Lett 102:28010CrossRefGoogle Scholar
  80. Kerner BS (2014) Three-phase theory of city traffic: moving synchronized flow patterns in under-saturated city traffic at signals. Physica A 397:76–110CrossRefMathSciNetzbMATHGoogle Scholar
  81. Kerner BS (2015a) Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: growing wave of increase in speed in synchronized flow. Phys Rev E 92:062827CrossRefGoogle Scholar
  82. Kerner BS (2015b) Failure of classical traffic flow theories: a critical review. Elektrotechnik und Informationstechnik 132:417–433CrossRefGoogle Scholar
  83. Kerner BS (2016a) Failure of classical traffic flow theories: stochastic highway capacity and automatic driving. Physica A 450:700–747CrossRefMathSciNetzbMATHGoogle Scholar
  84. Kerner BS (2016b) The maximization of the network throughput ensuring free flow conditions in traffic and transportation networks: breakdown minimization (BM) principle versus Wardrops equilibria. Eur Phys J B 89:199CrossRefGoogle Scholar
  85. Kerner BS (2017a) Breakdown minimization principle versus Wardrops equilibria for dynamic traffic assignment and control in traffic and transportation networks: a critical mini-review. Physica A 466:626–662CrossRefMathSciNetzbMATHGoogle Scholar
  86. Kerner BS (2017b) Breakdown in traffic networks: fundamentals of transportation science. Springer, Berlin/New YorkCrossRefzbMATHGoogle Scholar
  87. Kerner BS (2017c) Traffic breakdown, modeling approaches to. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, BerlinGoogle Scholar
  88. Kerner BS (2017d) Physics of Autonomous Driving based on Three-Phase Traffic Theory. arXiv:1710.10852v3 (http://arxiv.org/abs/1710.10852)
  89. Kerner BS, Klenov SL (2003) Microscopic theory of spatio-temporal congested traffic patterns at highway bottlenecks. Phys Rev E 68:036130CrossRefGoogle Scholar
  90. Kerner BS, Klenov SL (2009) Traffic breakdown, probabilistic theory of. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp. 9282–9303Google Scholar
  91. Kerner BS, Konhäuser P (1994) Structure and parameters of clusters in traffic flow. Phys Rev E 50:54–83CrossRefGoogle Scholar
  92. Kerner BS, Rehborn H (1996a) Experimental features and characteristics of traffic jams. Phys Rev E 53:R1297–R1300CrossRefGoogle Scholar
  93. Kerner BS, Rehborn H (1996b) Experimental properties of complexity in traffic flow. Phys Rev E 53:R4275–R4278CrossRefGoogle Scholar
  94. Kerner BS, Rehborn H (1997) Experimental properties of phase transitions in traffic flow. Phys Rev Lett 79:4030–4033CrossRefGoogle Scholar
  95. Kerner BS, Klenov SL, Schreckenberg M (2014) Traffic breakdown at a signal: classical theory versus the three-phase theory of city traffic. J Stat Mech 2014:P03001CrossRefMathSciNetGoogle Scholar
  96. Kometani E, Sasaki T (1958) On the stability of traffic flow (report-I). J Oper Res Soc Jpn 2:11MathSciNetGoogle Scholar
  97. Kometani E, Sasaki T (1959) A safety index for traffic with linear spacing. Oper Res 7:704CrossRefGoogle Scholar
  98. Kometani E, Sasaki T (1961) Dynamic behavior of traffic with a nonlinear spacing. In: Herman R (ed) Theory of traffic flow. Elsevier, Amsterdam, pp 105–119Google Scholar
  99. Krauß S, Wagner P, Gawron C (1997) Metastable states in a microscopic model of traffic flow. Phys Rev E 55:5597–5602CrossRefGoogle Scholar
  100. Kuhn TS (2012) The structure of scientific revolutions, 4th edn. The University of Chicago Press, Chicago/LondonCrossRefGoogle Scholar
  101. Kukuchi S, Uno N, Tanaka M (2003) Impacts of shorter perception-reaction time of adapted cruise controlled vehicles on traffic flow and safety. J Transp Eng 129:146–154CrossRefGoogle Scholar
  102. Kuwahara M, Kita H, Asakura Y (eds) (2015) 21st international symposium on transportation and traffic theory. Transp Res Procedia 7:1–704Google Scholar
  103. Lam WHK, Wong SC, Lo HK (eds) (2009) Transportation and traffic theory 2009. Springer, Dordrecht/Heidelberg/London/New YorkGoogle Scholar
  104. Lesort J-B (ed) (1996) Transportation and traffic theory. In: Proceedings of the 13th international symposium on transportation and traffic theory. Elsevier Science Ltd, OxfordGoogle Scholar
  105. Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, BerlinCrossRefGoogle Scholar
  106. Levine W, Athans M (1966) On the optimal error regulation of a string of moving vehicles. IEEE Trans Automat Contr 11:355–361CrossRefGoogle Scholar
  107. Levinson D, Zhang L (2006) Ramp meters on trial: evidence from the twin cities metering holiday. Transp Res A 40:810–828Google Scholar
  108. Liang C-Y, Peng H (1999) Optimal adaptive cruise control with guaranteed string stability. Veh Syst Dyn 32:313–330CrossRefGoogle Scholar
  109. Liang C-Y, Peng H (2000) String stability analysis of adaptive cruise controlled vehicles. JSME Jnt J Ser C 43:671–677Google Scholar
  110. Lighthill MJ, Whitham GB (1995) On kinematic waves. I flow movement in long rives. II a theory of traffic flow on long crowded roads. Proc Roy Soc A 229:281–345Google Scholar
  111. Little JD, Kelson MD, Gartner NH (1982) MAXBAND: a program for setting signals on arteries and triangular networks. Transp Res Rec 795:40–46Google Scholar
  112. Lorenz M, Elefteriadou L (2000) A probabilistic approach to defining freeway capacity and breakdown. Trans Res Cir E-C018:84–95Google Scholar
  113. Maerivoet S, De Moor B (2005) Cellular automata models of road traffic. Phys Rep 419:1–64CrossRefMathSciNetGoogle Scholar
  114. Mahmassani HS (2001) Dynamic network traffic assignment and simulation methodology for advanced system management applications. Netw Spat Econ 1:267–292CrossRefGoogle Scholar
  115. Mahmassani HS (ed) (2005) Transportation and traffic theory. In: Proceedings of the 16th international symposium on transportation and traffic theory. Elsevier, AmsterdamGoogle Scholar
  116. May AD (1990) Traffic flow fundamentals. Prentice-Hall, Inc., Englewood CliffsGoogle Scholar
  117. McDonald M, Wu J (1997) The integrated impacts of autonomous intelligent cruise control on motorway traffic flow. In: Proceedings of the ISC 97 conference, BostonGoogle Scholar
  118. Morgan JT, Little JDC (1964) Synchronizing traffic signals for maximal bandwidth. Oper Res 12:896–912CrossRefGoogle Scholar
  119. Nagatani T (2002) The physics of traffic jams. Rep Prog Phys 65:1331–1386CrossRefGoogle Scholar
  120. Nagel K, Schreckenberg M (1992) A cellular automaton model for freeway traffic. J Phys (France) I 2:2221–2229CrossRefGoogle Scholar
  121. Nagel K, Wagner P, Woesler R (2003) Still flowing: approaches to traffic flow and traffic jam modeling. Oper Res 51:681–716CrossRefMathSciNetzbMATHGoogle Scholar
  122. Newell GF (1961) Nonlinear effects in the dynamics of car following. Oper Res 9:209–229CrossRefzbMATHGoogle Scholar
  123. Newell GF (1963) Instability in dense highway traffic, a review. In: Proceedings of the second international symposium on traffic road traffic flow. OECD, London, pp 73–83Google Scholar
  124. Newell GF (1982) Applications of queuing theory. Chapman Hall, LondonCrossRefGoogle Scholar
  125. Newell GF (2002) A simplified car-following theory: a lower order model. Transp Res B 36:195–205CrossRefGoogle Scholar
  126. Papageorgiou M (1983) Application of automatic control concepts in traffic flow modeling and control. Springer, Berlin/New YorkCrossRefzbMATHGoogle Scholar
  127. Papageorgiou M, Kotsialos A (2000) Freeway ramp metering: an overview. In: Proceedings of the 3rd annual IEEE conference on intelligent transportation systems (ITSC 2000), Dearborn, Oct 2000, pp 228–239Google Scholar
  128. Papageorgiou M, Kotsialos A (2002) Freeway ramp metering: an overview. IEEE Trans Intell Transp Syst 3(4):271–280CrossRefGoogle Scholar
  129. Papageorgiou M, Papamichail I (2008) Overview of traffic signal operation policies for ramp metering. Transp Res Rec 2047:28–36CrossRefGoogle Scholar
  130. Papageorgiou M, Blosseville J-M, Hadj-Salem H (1990a) Modelling and real-time control of traffic flow on the southern part of Boulevard Priphrique in Paris: part I: modelling. Transp Res Part A 24A(5):345–359CrossRefGoogle Scholar
  131. Papageorgiou M, Blosseville J-M, Hadj-Salem H (1990b) Modelling and real-time control of traffic flow on the southern part of Boulevard Priphrique in Paris: part II: coordinated on-ramp metering. Transp Res Part A 24A(5):361–370CrossRefGoogle Scholar
  132. Papageorgiou M, Hadj-Salem H, Blosseville J-M (1991) ALINEA: a local feedback control law for on-ramp metering. Transp Res Rec 1320:58–64Google Scholar
  133. Papageorgiou M, Hadj-Salem H, Middelham F (1997) ALINEA local ramp metering – summary of field results. Transp Res Rec 1603:90–98CrossRefGoogle Scholar
  134. Papageorgiou M, Diakaki C, Dinopoulou V, Kotsialos A, Wang Y (2003) Review of road traffic control strategies. In: Proceedings of the IEEE, vol 91, pp 2043–2067Google Scholar
  135. Papageorgiou M, Wang Y, Kosmatopoulos E, Papamichail I (2007) ALINEA maximizes motorway throughput – an answer to flawed criticism. Traffic Eng Control 48(6):271–276Google Scholar
  136. Payne HJ (1971) Models of freeway traffic and control. In: Bekey GA (ed) Mathematical models of public systems, vol 1. Simulation Council, La JollaGoogle Scholar
  137. Payne HJ (1979) FREFLO: A macroscopic simulation model of freeway traffic. Transp Res Rec 772:68Google Scholar
  138. Peeta S, Ziliaskopoulos AK (2001) Foundations of dynamic traffic assignment: the past, the present and the future. Netw Spat Econ 1:233–265CrossRefGoogle Scholar
  139. Persaud BN, Yagar S, Brownlee R (1998) Exploration of the breakdown phenomenon in freeway traffic. Transp Res Rec 1634:64–69CrossRefGoogle Scholar
  140. Pipes LA (1953) An operational analysis of traffic dynamics. J Appl Phys 24:274–287CrossRefMathSciNetGoogle Scholar
  141. Prigogine I (1961) A Boltzmann-like approach to the statistical theory of traffic flow. In: Herman R (ed) Theory of traffic flow. Elsevier, Amsterdam, pp 158–164Google Scholar
  142. Rajamani R (2012) Vehicle dynamics AML control, Mechanical engineering series. Springer, BostonCrossRefzbMATHGoogle Scholar
  143. Rakha H, Tawfik A (2009) Traffic networks: dynamic traffic routing, assignment, and assessment. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp. 9429–9470Google Scholar
  144. Ran B, Boyce D (1996) Modeling dynamic transportation networks. Springer, BerlinCrossRefzbMATHGoogle Scholar
  145. Rehborn H, Klenov SL (2009) Traffic prediction of congested patterns. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, Berlin, pp. 9500–9536Google Scholar
  146. Rehborn H, Klenov SL, Koller M (2017) Traffic prediction of congested patterns. In: Meyers RA (ed) Encyclopedia of complexity and system science. Springer, BerlinGoogle Scholar
  147. Reuschel A (1950) Fahrzeugbewegungen in der Kolonne. Österreichisches Ingenieur-Archiv 4:193–215zbMATHGoogle Scholar
  148. Richards PI (1956) Shockwaves on the highway. Oper Res 4:42–51CrossRefGoogle Scholar
  149. Saifuzzaman M, Zheng Z (2014) Incorporating human-factors in car-following models: a review of recent developments and research needs. Transp Res C 48:379–403CrossRefGoogle Scholar
  150. Sathiyan SP, Kumar SS, Selvakumar AI (2013) A comprehensive review on cruise control for intelligent vehicles. Int J Innov Technol Explor Eng (IJITEE) 2:89–96Google Scholar
  151. Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf, DE (eds) (2007) Traffic and granular flow’ 05. In: Proceedings of the international workshop on traffic and granular flow. Springer, BerlinGoogle Scholar
  152. Schadschneider A, Chowdhury D, Nishinari K (2011) Stochastic transport in complex systems. Elsevier Science Inc., New YorkzbMATHGoogle Scholar
  153. Schreckenberg M, Wolf DE (eds) (1998) Traffic and granular flow’ 97. In: Proceedings of the international workshop on traffic and granular flow. Springer, SingaporeGoogle Scholar
  154. Sheffi Y (1984) Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  155. Shladover SE (1995) Review of the state of development of advanced vehicle control systems (AVCS). Veh Syst Dyn 24:551–595CrossRefGoogle Scholar
  156. Shvetsov VI (2003) Mathematical modeling of traffic flows. Autom Remote Control 64:1651–1689CrossRefMathSciNetzbMATHGoogle Scholar
  157. Smaragdis E, Papageorgiou M (2003) Series of new local ramp metering strategies. Transp Res Rec 1856:74–86CrossRefGoogle Scholar
  158. Swaroop D, Hedrick JK (1996) String stability for a class of nonlinear systems. IEEE Trans Autom Control 41:349–357CrossRefzbMATHGoogle Scholar
  159. Swaroop D, Hedrick JK, Choi SB (2001) Direct adaptive longitudinal control of vehicle platoons. IEEE Trans Veh Technol 50:150–161CrossRefGoogle Scholar
  160. Taylor MAP (ed) (2002) Transportation and traffic theory in the 21st century. In: Proceedings of the 15th international symposium on transportation and traffic theory. Elsevier Science Ltd, AmsterdamGoogle Scholar
  161. Treiber M, Helbing D (2001) Microsimulations of freeway traffic including control measures. Automatisierungstechnik 49:478–484CrossRefGoogle Scholar
  162. Treiber M, Kesting A (2013) Traffic Flow dynamics. Springer, BerlinCrossRefzbMATHGoogle Scholar
  163. van Arem B, van Driel C, Visser R (2006) The impact of cooperative adaptive cruise control on traffic-flow characteristics. IEEE Trans Intell Transp Syst 7:429–436CrossRefGoogle Scholar
  164. Wardrop JG (1952) Some theoretical aspects of road traffic research. In: Proceedings of the institute of civil engineers part II, vol 1, pp 325–378Google Scholar
  165. Webster FV (1958) Traffic signal settings. HMSO, LondonGoogle Scholar
  166. Whitham GB (1974) Linear and nonlinear waves. Wiley, New YorkzbMATHGoogle Scholar
  167. Wiedemann R (1974) Simulation des Verkehrsflusses. University of Karlsruhe, KarlsruheGoogle Scholar
  168. Wolf DE (1999) Cellular automata for traffic simulations. Physica A 263:438–451CrossRefMathSciNetGoogle Scholar
  169. Wolf DE, Schreckenberg M, Bachem A (eds) (1995) Traffic and granular flow. In: Proceedings of the international workshop on traffic and granular flow. World Scientific, SingaporeGoogle Scholar
  170. Xiao L, Gao F (2010) A comprehensive review of the development of adaptive cruise control systems. Veh Syst Dyn 48:1167–1192CrossRefGoogle Scholar
  171. Zurlinden H (2003) Ganzjahresanalyse des Verkehrsflusses auf Straßen. Schriftenreihe des Lehrstuhls für Verkehrswesen der Ruhr-Universität Bochum, Heft 26, BochumGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics of Transport and TrafficUniversity Duisburg-EssenDuisburgGermany

Personalised recommendations