Crop Science pp 453-475 | Cite as

Marker-Assisted Breeding in Crops

  • Roberto TuberosaEmail author
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Association mapping (AM)

Association mapping, also known as “linkage disequilibrium mapping,” allows to map QTLs by taking advantage of historic linkage disequilibrium to link measurable phenotypes to genotypes of unrelated individuals, hence uncovering genetic associations.


Procedure used by plant breeders to introgress an allele at a locus of interest (e.g., disease resistance) from a donor parent to a recurrent parent, usually a successful cultivar. The recurrent parent is crossed several times to the original cross, and selection is performed at each cycle to recover the plants with the desired allele and the largest portion of the genome of the recurrent parent.

Candidate gene

A coding sequence that is supposed to be causally related to the trait under selection. The candidate gene approach is best applied with simple biochemical traits when a clear cause-effect relationship can be established between the gene function and the target trait.

Consensus map



  1. 1.
    Borlaug NE, Dowswell CR (2005) Feeding a world of ten billion people: a 21st century challenge. In: Tuberosa R, Phillips RL, Gale M (eds) Proceedings of the international congress “In the wake of the double helix: from the green revolution to the gene revolution”, 27–31 May 2003, Bologna, Italy. Avenue Media, Bologna, pp 3–23Google Scholar
  2. 2.
    Abberton M et al (2016) Global agricultural intensification during climate change: a role for genomics. Plant Biotechnol J 14(4):1095–1098PubMedCrossRefGoogle Scholar
  3. 3.
    Garrido-Cardenas J, Mesa-Valle C, Manzano-Agugliaro F (2017) Trends in plant research using molecular markers. Planta 1–15Google Scholar
  4. 4.
    Li H et al (2018) Fast-forwarding genetic gain. Trends Plant SciGoogle Scholar
  5. 5.
    Tuberosa R, Frascaroli E, Salvi S (2017) Leveraging plant genomics for better and healthier food. Curr Opin Food SciGoogle Scholar
  6. 6.
    Leng P-f, Lübberstedt T, Ming-liang Xu (2017) Genomics-assisted breeding – a revolutionary strategy for crop improvement. J Integr Agric 16(12):2674–2685CrossRefGoogle Scholar
  7. 7.
    Xu Y et al (2017) Enhancing genetic gain in the era of molecular breeding. J Exp Bot 68(11):2641–2666PubMedCrossRefGoogle Scholar
  8. 8.
    Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185PubMedCrossRefGoogle Scholar
  9. 9.
    Chen LM, Zhao ZG, Liu X, Liu LL, Jiang L, Liu SJ et al (2011) Marker-assisted breeding of a photoperiod-sensitive male sterile japonica rice with high cross-compatibility with indica rice. Mol Breed 27:247–258CrossRefGoogle Scholar
  10. 10.
    Cheng A et al (2017) Rapid and targeted introgression of fgr gene through marker-assisted backcrossing in rice (Oryza sativa L.). Genome 60(12):1045–1050PubMedCrossRefGoogle Scholar
  11. 11.
    Gupta PK, Langridge P, Mir RR (2010) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161CrossRefGoogle Scholar
  12. 12.
    Korinsak S et al (2016) Improvement of the submergence tolerance and the brown planthopper resistance of the Thai jasmine rice cultivar KDML105 by pyramiding Sub1 and Qbph12. Field Crop Res 188:105–112CrossRefGoogle Scholar
  13. 13.
    Kumar J et al (2017) Quantitative trait loci from identification to exploitation for crop improvement. Plant Cell Rep 36(8):1187–1213PubMedCrossRefGoogle Scholar
  14. 14.
    Maccaferri M et al (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13(5):648–663PubMedCrossRefGoogle Scholar
  15. 15.
    Martinez AK et al (2016) Yield QTLome distribution correlates with gene density in maize. Plant Sci 242:300–309PubMedCrossRefGoogle Scholar
  16. 16.
    Salvi S, Castelletti S, Tuberosa R (2009) An updated consensus map for flowering time QTLs in maize. Maydica 54:501–512Google Scholar
  17. 17.
    Bernardo R (2016) Bandwagons I, too, have known. Theor Appl Genet 129(12):2323–2332PubMedCrossRefGoogle Scholar
  18. 18.
    Zamir D (2013) Where have all the crop phenotypes gone? PLoS Biol 11(6):e1001595PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rasheed A et al (2017) Crop breeding chips and genotyping platforms: progress, challenges, and perspectives. Mol Plant 10(8):1047–1064PubMedCrossRefGoogle Scholar
  20. 20.
    Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2(3):195–212CrossRefGoogle Scholar
  21. 21.
    Poecke v, Remco MP et al (2013) Sequence-based SNP genotyping in durum wheat. Plant Biotechnol J 11(7):809–817PubMedCrossRefGoogle Scholar
  22. 22.
    Pearce S et al (2015) WheatExp: an RNA-seq expression database for polyploid wheat. BMC Plant Biol 15(1):299PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tello-Ruiz MK et al (2017) Gramene 2018: unifying comparative genomics and pathway resources for plant research. Nucleic Acids Res 46(D1):D1181–D1189PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Borrill P, Adamski N, Uauy C (2015) Genomics as the key to unlocking the polyploid potential of wheat. New Phytol 208(4):1008–1022PubMedCrossRefGoogle Scholar
  25. 25.
    Tuberosa R, Pozniak C (2014) Durum wheat genomics comes of age. Mol Breed 34:1527–1530CrossRefGoogle Scholar
  26. 26.
    Uauy C, Wulff BBH, Dubcovsky J (2017) Combining traditional mutagenesis with new high-throughput sequencing and genome editing to reveal hidden variation in polyploid wheat. Annu Rev Genet 51:435–454PubMedCrossRefGoogle Scholar
  27. 27.
    Uauy C (2017) Wheat genomics comes of age. Curr Opin Plant Biol 36:142–148PubMedCrossRefGoogle Scholar
  28. 28.
    Wang S et al (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12(6):787–796PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  30. 30.
    Chung YS et al (2017) Genotyping-by -sequencing: a promising tool for plant genetics research and breeding. Hortic Environ Biotechnol 58(5):425–431CrossRefGoogle Scholar
  31. 31.
    Kim C et al (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22PubMedCrossRefGoogle Scholar
  32. 32.
    Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15(2):149–161PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bolot S, Abrouk M, Masood-Quraishi U, Stein N, Messing J, Feuillet C et al (2009) The ‘inner circle’ of the cereal genomes. Curr Opin Plant Biol 12:119–125PubMedCrossRefGoogle Scholar
  34. 34.
    Murat F et al (2015) Understanding Brassicaceae evolution through ancestral genome reconstruction. Genome Biol 16(1):262PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dufayard J-F et al (2017) New insights on leucine-rich repeats receptor-like kinase orthologous relationships in angiosperms. Front Plant Sci 8:381PubMedPubMedCentralGoogle Scholar
  36. 36.
    Faircloth BC (2017) Identifying conserved genomic elements and designing universal bait sets to enrich them. Methods Ecol Evol 8(9):1103–1112CrossRefGoogle Scholar
  37. 37.
    Rajwanshi R et al (2014) Orthologous plant microRNAs: microregulators with great potential for improving stress tolerance in plants. Theor Appl Genet 127(12):2525–2543PubMedCrossRefGoogle Scholar
  38. 38.
    Xie J et al (2018) Conserved noncoding sequences conserve biological networks and influence genome evolution. Heredity 1Google Scholar
  39. 39.
    Geldermann H (1975) Investigation on inheritance of quantitative characters in animals by gene markers. I. Methods. Theo Appl Genetic 46:319–330CrossRefGoogle Scholar
  40. 40.
    Sax K (1923) The association of size differences with seed-coat patterns and pigmentation in Phaseolus vulgaris. Genetics 8:552–560PubMedPubMedCentralGoogle Scholar
  41. 41.
    Beavis WD (1998) QTL analysis: power, precision, and accuracy. Molecular dissection of complex traits. CRC Press, Boca Raton, pp 145–162Google Scholar
  42. 42.
    Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  43. 43.
    Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  44. 44.
    Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement-volume 1: genomics approaches and platforms. Springer, Dordrecht, pp 207–226CrossRefGoogle Scholar
  45. 45.
    Lawrenson T et al (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16(1):258PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Doerge RW (2002) Multifactorial genetics: mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43PubMedCrossRefGoogle Scholar
  47. 47.
    Collard BCY et al (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142(1–2):169–196CrossRefGoogle Scholar
  48. 48.
    Liu W et al (2017) Novel sources of stripe rust resistance identified by genome-wide association mapping in Ethiopian durum wheat (Triticum turgidum ssp. durum). Front Plant Sci 8:774PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Podlich DW, Winkler CR, Cooper M (2004) Mapping as you go: an effective approach for marker-assisted selection of complex traits. Crop Sci 44:1560–1571CrossRefGoogle Scholar
  50. 50.
    Beavis WD (1994) The power and deceit of QTL experiments: lessons from comparative QTL studies. Washington, DC, pp 250–266Google Scholar
  51. 51.
    Ersoz ES, Yu J, Buckler ES (2007) Applications of linkage disequilibrium and association mapping. In: Varshney RK, Tuberosa R (eds) Genomics-assisted crop improvement-volume 1: genomics approaches and platforms. Springer, Dordrecht, pp 97–120CrossRefGoogle Scholar
  52. 52.
    Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F et al (2011) Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62:409–438PubMedCrossRefGoogle Scholar
  53. 53.
    Rafalski A (2010) Association genetics in crop improvement. Curr Opin Plant Biol 13:174–180PubMedCrossRefGoogle Scholar
  54. 54.
    Riaz A et al (2018) Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection. Theor Appl Genet 1–18Google Scholar
  55. 55.
    Xiao Y et al (2017) Genome-wide association studies in maize: praise and stargaze. Mol Plant 10(3):359–374PubMedCrossRefGoogle Scholar
  56. 56.
    Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J et al (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Buntjer JB, Sorensen AP, Peleman JD (2005) Haplotype diversity: the link between statistical and biological association. Trends Plant Sci 10:466–471PubMedCrossRefGoogle Scholar
  58. 58.
    Qian L et al (2017) Exploring and harnessing haplotype diversity to improve yield stability in crops. Front Plant Sci 8:1534PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Shorinola O et al (2017) Haplotype analysis of the pre-harvest sprouting resistance locus Phs-A1 reveals a causal role of TaMKK3-A in global germplasm. Front Plant Sci 8:1555PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Maccaferri M et al (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67(4):1161–1178PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sukumaran S, Reynolds MP, Sansaloni C (2018) Genome-wide association analyses identify QTL hotspots for yield and component traits in durum wheat grown under yield potential, drought, and heat stress environments. Front Plant Sci 9:81PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 104:11376–11381PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Avni R et al (2017) Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science 357(6346):93–97PubMedCrossRefGoogle Scholar
  64. 64.
    Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C et al (2009) The genetic architecture of maize flowering time. Science 325:714–718PubMedCrossRefGoogle Scholar
  65. 65.
    Huang C et al (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci 115(2):E334–E341PubMedCrossRefGoogle Scholar
  66. 66.
    Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH et al (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161PubMedCrossRefGoogle Scholar
  67. 67.
    Salvi S et al (2016) Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. J Exp Bot 67(4):1149–1159PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hwang S et al (2016) Meta-analysis to refine map position and reduce confidence intervals for delayed-canopy-wilting QTLs in soybean. Mol Breed 36(7):91CrossRefGoogle Scholar
  69. 69.
    Robertson DS (1985) A possible technique for isolating genic DNA for quantitative traits in plants. J Theor Biol 117:1–10CrossRefGoogle Scholar
  70. 70.
    Brinton J, Simmonds J, Uauy C (2018) Ubiquitin-related genes are differentially expressed in isogenic lines contrasting for pericarp cell size and grain weight in hexaploid wheat. BMC Plant Biol 18(1):22PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Yang X et al (2017) QTL mapping by whole genome re-sequencing and analysis of candidate genes for nitrogen use efficiency in rice. Front Plant Sci 8:1634PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Prohens J et al (2017) Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica 213(7):158CrossRefGoogle Scholar
  74. 74.
    Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989PubMedCrossRefGoogle Scholar
  75. 75.
    Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti MC, Castelletti S, Tuberosa R (2011) Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol 11:4PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Farré A et al (2016) Application of a library of near isogenic lines to understand context dependent expression of QTL for grain yield and adaptive traits in bread wheat. BMC Plant Biol 16(1):161PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Haritha G et al (2018) Yield traits and associated marker segregation in elite introgression lines derived from O. sativa× O. nivara. Rice Sci 25(1):19–31CrossRefGoogle Scholar
  78. 78.
    Kulkarni M et al (2017) Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency. Front Chem 5:106PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Burton RA, Wilson SM, Hrmova M, Harvey AJ, Shirley NJ, Stone BA et al (2006) Cellulose synthase-like CslF genes mediate the synthesis of cell wall (1,3;1,4)-β-D-glucans. Science 311:1940–1942PubMedCrossRefGoogle Scholar
  80. 80.
    Han Y et al (2017) The predicted cross value for genetic introgression of multiple alleles. Genetics 205(4):1409–1423PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Millet EJ et al (2016) Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios. Plant Physiol 172(2):749–764PubMedPubMedCentralGoogle Scholar
  82. 82.
    Chapman SC (2008) Use of crop models to understand genotype by environment interactions for drought in real-world and simulated plant breeding trials. Euphytica 161:195–208CrossRefGoogle Scholar
  83. 83.
    Kusmec A et al (2017) Distinct genetic architectures for phenotype means and plasticities in Zea mays. Nat plants 3(9):715PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Martres P, Yin X, Ewert F (2017) Modeling crops from genotype to phenotype in a changing climate. Field Crop Res 202:1–4CrossRefGoogle Scholar
  85. 85.
    Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Crossa J et al (2016) Extending the marker × environment interaction model for genomic-enabled prediction and genome-wide association analysis in durum wheat. Crop Sci 56(5):2193–2209CrossRefGoogle Scholar
  87. 87.
    Gouache D et al (2017) Bridging the gap between ideotype and genotype: challenges and prospects for modelling as exemplified by the case of adapting wheat (Triticum aestivum L.) phenology to climate change in France. Field Crop Res 202:108–121CrossRefGoogle Scholar
  88. 88.
    Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334PubMedCrossRefGoogle Scholar
  89. 89.
    Xue SL, Li GQ, Jia HY, Lin F, Cao Y, Xu F et al (2010) Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed 25:397–405CrossRefGoogle Scholar
  90. 90.
    Zheng H et al (2015) Genetic structure, linkage disequilibrium and association mapping of salt tolerance in japonica rice germplasm at the seedling stage. Mol Breed 35(7):152CrossRefGoogle Scholar
  91. 91.
    Das G, Patra JK, Baek K-H (2017) Insight into MAS: a molecular tool for development of stress resistant and quality of rice through gene stacking. Front Plant Sci 8:985PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pathania A, Rialch N, Sharma PN (2017) Marker-assisted selection in disease resistance breeding: a boon to enhance agriculture production. Curr Dev Biotechnol Bioeng 187–213Google Scholar
  93. 93.
    Waziri A, Kumar P, Purty RS (2016) Saltol QTL and their role in salinity tolerance in rice. Austin J Biotechnol Bioeng 3(3):1067Google Scholar
  94. 94.
    Randhawa HS, Mutti JS, Kidwell K, Morris CF, Chen XM, Gill KS (2009) Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. PLoS One 4:e5752PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H et al (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124CrossRefGoogle Scholar
  96. 96.
    De Beukelaer H, De Meyer G, Fack V (2015) Heuristic exploitation of genetic structure in marker-assisted gene pyramiding problems. BMC Genet 16(1):2PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Servin B, Martin OC, Mezard M, Hospital F (2004) Toward a theory of marker-assisted gene pyramiding. Genetics 168:513–523PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Arruda MP et al (2016) Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.). Mol Breed 36(7):84CrossRefGoogle Scholar
  99. 99.
    Pratap A et al (2017) Marker-assisted introgression of resistance to fusarium wilt race 2 in Pusa 256, an elite cultivar of desi chickpea. Mol Gen Genomics 292(6):1237–1245CrossRefGoogle Scholar
  100. 100.
    Herve P, Serraj R (2009) Gene technology and drought: a simple solution for a complex trait? Afr J Biotechnol 8:1740–1749Google Scholar
  101. 101.
    Reynolds M, Tuberosa R (2008) Translational research impacting on crop productivity in drought-prone environments. Curr Opin Plant Biol 11:171–179PubMedCrossRefGoogle Scholar
  102. 102.
    Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Uga Y et al (2015) Genetic improvement for root growth angle to enhance crop production. Breed Sci 65(2):111–119PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Xu YB, Crouch JH (2008) Marker-assisted selection in plant breeding: from publications to practice. Crop Sci 48:391–407CrossRefGoogle Scholar
  105. 105.
    Edwards MD, Page NJ (1994) Evaluation of marker-assisted selection through computer simulation. Theor Appl Genet 88:376–382PubMedCrossRefGoogle Scholar
  106. 106.
    van Berloo R, Stam P (2001) Simultaneous marker-assisted selection for multiple traits in autogamous crops. Theor Appl Genet 102:1107–1112CrossRefGoogle Scholar
  107. 107.
    Abdulmalik RO et al (2017) Genetic gains in grain yield of a maize population improved through marker assisted recurrent selection under stress and non-stress conditions in West Africa. Front Plant Sci 8:841PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bankole F et al (2017) Genetic gains in yield and yield related traits under drought stress and favorable environments in a maize population improved using marker assisted recurrent selection. Front Plant Sci 8:808PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bernardo R (2001) What if we knew all the genes for a quantitative trait in hybrid crops? Crop Sci 41:1–4CrossRefGoogle Scholar
  110. 110.
    Bernardo R (2010) Genomewide selection with minimal crossing in self-pollinated crops. Crop Sci 50:624–627CrossRefGoogle Scholar
  111. 111.
    Lorenz AJ, Chao SM, Asoro FG, Heffner EL, Hayashi T, Iwata H et al (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123CrossRefGoogle Scholar
  112. 112.
    Dimitrijevic A, Horn R (2017) Sunflower hybrid breeding: from markers to genomic selection. Front Plant Sci 8:2238PubMedCrossRefGoogle Scholar
  113. 113.
    You Q et al (2018) Development and applications of a high throughput genotyping tool for polyploid crops: single nucleotide polymorphism (SNP) array. Front Plant Sci 9:104PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Crossa J et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961PubMedCrossRefGoogle Scholar
  115. 115.
    Wong CK, Bernardo R (2008) Genomewide selection in oil palm: increasing selection gain per unit time and cost with small populations. Theor Appl Genet 116(6):815–824PubMedCrossRefGoogle Scholar
  116. 116.
    Heslot N, Jannink J-L, Sorrells ME (2015) Perspectives for genomic selection applications and research in plants. Crop Sci 55(1):1–12CrossRefGoogle Scholar
  117. 117.
    Bassi FM et al (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36PubMedCrossRefGoogle Scholar
  118. 118.
    Bhat JA et al (2016) Genomic selection in the era of next generation sequencing for complex traits in plant breeding. Front Genet 7:221PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Combs E, Bernardo R (2013) Genomewide selection to introgress semidwarf maize germplasm into US Corn Belt inbreds. Crop Sci 53(4):1427–1436CrossRefGoogle Scholar
  120. 120.
    Massman JM et al (2013) Genomewide predictions from maize single-cross data. Theor Appl Genet 126(1):13–22PubMedCrossRefGoogle Scholar
  121. 121.
    McKersie B (2015) Planning for food security in a changing climate. J Exp Bot 66(12):3435–3450PubMedCrossRefGoogle Scholar
  122. 122.
    Eathington SR, Crosbie TM, Edwards MD, Reiter R, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163CrossRefGoogle Scholar
  123. 123.
    Sandhu N et al (2018) Positive interactions of major-effect QTLs with genetic background that enhances rice yield under drought. Sci Rep 8(1):1626PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Gong C et al (2018) Dissection of insertion-deletion (InDel) variants within differentially-expressed genes involved in wood formation in Populus. Front Plant Sci 8:2199PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Huang L et al (2016) Evolution and adaptation of wild emmer wheat populations to biotic and abiotic stresses. Annu Rev Phytopathol 54:279–301PubMedCrossRefGoogle Scholar
  126. 126.
    Merchuk-Ovnat L et al (2017) Ancestral QTL alleles from wild emmer wheat enhance root development under drought in modern wheat. Front Plant Sci 8:703PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Scossa F et al (2016) Genomics-based strategies for the use of natural variation in the improvement of crop metabolism. Plant Sci 242:47–64PubMedCrossRefGoogle Scholar
  128. 128.
    Yamasaki M, Tenaillon MI, Bi IV, Schroeder SG, Sanchez-Villeda H, Doebley JF et al (2005) A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell 17:2859–2872PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tohge T, Scossa F, Fernie AR (2015) Integrative approaches to enhance understanding of plant metabolic pathway structure and regulation. Plant Physiol 169(3):1499–1511PubMedPubMedCentralGoogle Scholar
  130. 130.
    Talamè V, Ozturk NZ, Bohnert HJ, Tuberosa R (2007) Barley transcript profiles under dehydration shock and drought stress treatments: a comparative analysis. J Exp Bot 58:229–240PubMedCrossRefGoogle Scholar
  131. 131.
    Chung PJ et al (2016) Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics 17(1):563PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Shu Y et al (2016) Genome-wide investigation of microRNAs and their targets in response to freezing stress in Medicago sativa L., based on high-throughput sequencing. G3 Genes Genomes Genetics 6(3):755–765PubMedPubMedCentralGoogle Scholar
  133. 133.
    Wang S et al (2017) Integrated RNA sequencing and QTL mapping to identify candidate genes from Oryza rufipogon associated with salt tolerance at the seedling stage. Front Plant Sci 8:1427PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kofler R, Torres TT, Lelley T, Schlotterer C (2009) PanGEA: identification of allele specific gene expression using the 454 technology. Bmc Bioinformatics 10:143PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Kaur P, Gaikwad K (2017) From genomes to GENE-omes: exome sequencing concept and applications in crop improvement. Front Plant Sci 8:2164PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    King R et al (2015) Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One 10(9):e0137549PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Sharma TR et al (2017) Status and prospects of next generation sequencing technologies in crop plants. Curr Issues Mol Biol 27:1–36PubMedGoogle Scholar
  138. 138.
    Ghatak A, Chaturvedi P, Weckwerth W (2017) Cereal crop proteomics: systemic analysis of crop drought stress responses towards marker-assisted selection breeding. Front Plant Sci 8:757PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769PubMedCrossRefGoogle Scholar
  140. 140.
    Guo H et al (2017) Development of a high-efficient mutation resource with phenotypic variation in hexaploid winter wheat and identification of novel alleles in the TaAGP. L-B1 gene. Front Plant Sci 8:1404PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Li G et al (2017) The sequences of 1,504 mutants in the model rice variety Kitaake facilitate rapid functional genomic studies. Plant Cell.
  142. 142.
    Schönhofen A et al (2016) Registration of common wheat germplasm with mutations in SBEII genes conferring increased grain amylose and resistant starch content. J Plant Regis 10(2):200–205CrossRefGoogle Scholar
  143. 143.
    Talamè V, Bovina R, Sanguineti MC, Tuberosa R, Lundqvist U, Salvi S (2008) TILLMore, a resource for the discovery of chemically induced mutants in barley. Plant Biotechnol J 6:477–485PubMedCrossRefGoogle Scholar
  144. 144.
    Horler AST, Fretter P, Ambrose M (2018) SeedStor: a germplasm information management system and public database. Plant Cell Physiol 59(1):e5PubMedCrossRefGoogle Scholar
  145. 145.
    McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li HH, Sun Q et al (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740PubMedCrossRefGoogle Scholar
  146. 146.
    Yu J et al (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Zhang N et al (2015) Genome-wide association of carbon and nitrogen metabolism in the maize nested association mapping population. Plant Physiol.
  148. 148.
    Huang BE et al (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128(6):999–1017PubMedCrossRefGoogle Scholar
  149. 149.
    Habash DZ et al (2014) Systems responses to progressive water stress in durum wheat. PLoS One 9(9):e108431PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Angelovici R et al (2016) Network-guided GWAS improves identification of genes affecting free amino acids. Plant Physiol 173:872PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Zhou M (2011) Accurate phenotyping reveals better QTL for waterlogging tolerance in barley. Plant Breed 130:203–208CrossRefGoogle Scholar
  152. 152.
    Lobos GA et al (2017) Plant phenotyping and phenomics for plant breeding. Front Plant Sci 8:2181PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Hickey LT et al (2017) Speed breeding for multiple disease resistance in barley. Euphytica 213(3):64CrossRefGoogle Scholar
  154. 154.
    Watson A et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 1Google Scholar
  155. 155.
    Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233PubMedCrossRefGoogle Scholar
  156. 156.
    Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD et al (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Agricultural and Food SciencesUniversity of BolognaBolognaItaly

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations