Crop Science pp 383-399 | Cite as

Spatial Crop Structure in Agricultural Systems

  • Emilio Horacio SatorreEmail author
  • Gustavo Angel Maddonni
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



refers to the process, whereby plants share resources (e.g., mineral nutrients, water, and light) which are in insufficient supply for their joint requirements [1].

Crop structure

refers to the spatial, temporal, and genetic arrangement of a particular crop species or genotype within a sown area.

Plant vegetative and reproductive plasticity

refers to the ability of an individual plant within a crop to modify the number of vegetative and/or reproductive structures depending on the amount of available resources.


is the number of individuals of a plant species in a unit of area within a crop.


is the process whereby one crop species provides some sort of benefit for another species when in a polyculture. Usually, when facilitation occurs, at least one crop may positively alter the environment for the other crop [2].

Polyculture (also intercrop)

refers to crop arrangements that include more than one crop species or genotypes grown together partially...


  1. 1.
    Snaydon RW, Satorre EH (1989) Modifications and interpretations of bivariate diagrams for plant competition data. J Appl Ecol 26:1043–1057CrossRefGoogle Scholar
  2. 2.
    Vandermeer J (1992) The ecology of intercropping. Cambridge University Press, CambridgeGoogle Scholar
  3. 3.
    Loomis RS, Connor DJ (1992) Crop ecology: productivity and management in agricultural systems. Cambridge University Press, CambridgeGoogle Scholar
  4. 4.
    Van Ittersum MK, Rabbinge R (1997) Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crop Res 52:197–208CrossRefGoogle Scholar
  5. 5.
    Maddonni GA (2012) Analysis of the climatic constraints to maize production in the current agricultural region of Argentina, a probabilistic approach. Theor Appl Climatol 107:325–345CrossRefGoogle Scholar
  6. 6.
    Donald CM (1963) Competition among crop and pasture plants. Adv Agron 15:1–118CrossRefGoogle Scholar
  7. 7.
    Harper JL (1977) Population biology of plants. Academic, LondonGoogle Scholar
  8. 8.
    Willey RW, Heath SB (1969) The quantitative relationships between plant population and crop yield. Adv Agron 21:281–321CrossRefGoogle Scholar
  9. 9.
    Vega CRC, Sadras VO (2003) Size-dependent growth and the development of inequality in maize, sunflower and soybean. Ann Bot 91:1–11CrossRefGoogle Scholar
  10. 10.
    Maddonni GA, Chelle M, Drouet J-L, Andrieu B (2001) Light interception of contrasting leaf azimuth canopies under square and rectangular plant spatial distributions: simulations and crop measurements. Field Crop Res 70:1–13CrossRefGoogle Scholar
  11. 11.
    Andrade, FH. (1995). Analysis of growth and yield of maize, sunflower and soybean grown at Balcarce, ArgentinaGoogle Scholar
  12. 12.
    Yunusa IAM (1989) Effects of planting density and plant arrangement pattern on growth and yields of maize (Zea mays L.) and soya bean (Glycine max L. Merr.) grown in mixtures. J Agric Sci Cambridge 112:1–8CrossRefGoogle Scholar
  13. 13.
    Puckridge DW, Donald CM (1967) Competition among wheat plants sown at a wide range of densities. Aust J Agric Res 18:193–211CrossRefGoogle Scholar
  14. 14.
    Vega CRC, Andrade FH, Sadras VO, Uhart SA, Valentinuz OR (2001) Seed number as a function of growth. A comparative study in soybean, sunflower, and maize. Crop Sci 41:748–754CrossRefGoogle Scholar
  15. 15.
    Valentinuz O (1996) Crecimiento y rendimiento comparados de girasol, maíz y soja ante cambios en la densidad de plantas. MSc thesis, Facultad de Ciencias Agrarias, Universidad de Mar del Plata, Argentina, p 45Google Scholar
  16. 16.
    Trenbath BR (1976) Plant interactions in mixed crop communities. In: Papendick RI, Sánchez PA, Triplett GB (eds) Multiple cropping. ASA Special Publication Number 27 (ASA), pp 129–170Google Scholar
  17. 17.
    van den Boogaard R, Veneklass EJ, Peacock JM, Lambers H (1996) Yield and water use of wheat (Triticum aestivum) in a mediterranean environment: cultivar differences and sowing density effects. Plant Soil 181(2):251–262CrossRefGoogle Scholar
  18. 18.
    Kira T, Ogawa H, Shinozaki K (1953) Intraspecific competition among higher plants. 1- competition-density-yield inter-relationships in regularly dispersed populations. J Inst Polytech Osaka City Univ 4:1–16Google Scholar
  19. 19.
    Fischer RA (1984) Wheat. In: Smith WH, Barta SJ (eds) Symposium on potential productivity of field crops under different environments. IRRI, Los Baños, pp 129–153Google Scholar
  20. 20.
    Savin R, Slafer GA (1991) Shading effects on yield of an Argentinian wheat cultivar. J Agric Sci Camb 116:1–7CrossRefGoogle Scholar
  21. 21.
    Andrade F, Cirilo A, Uhart S, Otegui M (1996) Ecofisiología del cultivo de maíz. Editorial La Barrosa & Dekalb Press, ArgentinaGoogle Scholar
  22. 22.
    Otegui ME, Ruiz R (1993) Performance of six maize hybrids sown at three population densities in Argentina. Test of agrochemicals and cultivars. Ann Appl Biol 122(Suppl):172–173Google Scholar
  23. 23.
    Gallez LM, Mockel FE, Cantamutto MA, Gullace GD, Vallati AR (1986) Densidad de siembra y separación entre hileras: Su influencia sobre el rendimiento de trigo en la región pampeana semiárida. Actas I Congreso Nacional de Trigo (Pergamino, Argentina) 3:167–177Google Scholar
  24. 24.
    McLeod JG, Campbell CA, Gan Y, Dyck FB, Vera CL (1996) Seeding depth, rate and row spacing for winter wheat grown on stubble and chemical fallow in the semiarid prairies. Can J Plant Sci 76(2):207–214CrossRefGoogle Scholar
  25. 25.
    Holliday R (1960) Plant population and crop yield. Field Crop Abstr 13(3):159–167Google Scholar
  26. 26.
    Shinozaki K, Kira T (1956) Intraspecific competition among higher plants VII logistic theory of the C-D effect. J Inst Polytech Osaka City Univ 7:35–72Google Scholar
  27. 27.
    Arias S, Satorre EH, Guglielmini A (1994) Competencia entre trigo (Triticum aestivum L.) y Brassica sp. El efecto de la densidad del cultivo y la maleza en dos niveles de fertilización nitrogenada. Actas III Congreso Nacional de Trigo (Bahía Blanca, Argentina) 1:193–194Google Scholar
  28. 28.
    Peltonen J, Peltonen-Sainio P (1997) Breaking uniculm growth habit of spring cereals at high latitudes by crop management. II Tillering, grain yield and yield components. J Agron Crop Sci 178(2):87–95CrossRefGoogle Scholar
  29. 29.
    Andrade FH, Uhart SA, Cirilo A (1993) Temperature affects radiation use efficiency in maize. Field Crops Res 32:17–25CrossRefGoogle Scholar
  30. 30.
    Donald CM, Hamblin J (1976) The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv Agron 28:361–405CrossRefGoogle Scholar
  31. 31.
    Martin MPLD, Field RJ (1987) Competition between vegetative plants of wild oat (A. fatua) and wheat (Triticum aestivum L.) Weed Res 27:119–124CrossRefGoogle Scholar
  32. 32.
    Kantolic A (2008) Fecha y densidad de siembra en soja. In: Satorre E (ed) Producción de Soja. AACREA, Unidad de Comunicación y Marketing, Buenos Aires, pp 23–32Google Scholar
  33. 33.
    Andrade HF, Otegui ME, Vega C (2000) Intercepted radiation at flowering and kernel number in maize. Agron J 92:92–97CrossRefGoogle Scholar
  34. 34.
    Sánchez RA, Casal JJ, Ballaré CL, Scopel AL (1993) Plant responses to canopy density mediated by photomorphogenic processes. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science I. Crop Science Society of America, Madison, pp 779–786Google Scholar
  35. 35.
    Barnes C, Bugbee B (1991) Morphological responses of wheat to changes in phytochrome photoequilibrium. Plant Physiol 97:359–365CrossRefGoogle Scholar
  36. 36.
    Maddonni GA, Otegui ME, Andrieu B, Chelle M, Casal JJ (2002) Maize leaves turn away from neighbors. Plant Physiol 130:1181–1189CrossRefGoogle Scholar
  37. 37.
    Sarandon SJ, Chidichimo HO (1985) Efecto de la densidad de siembra sobre la acumulación y redistribución del nitrógeno en tres cultivares de T. aestivum L. Rev Fac Agron (La Plata) 61–62:105–122Google Scholar
  38. 38.
    Verona CA, Loffer CM, Fernández ON (1980) Efecto de la densidad de plantas sobre el rendimiento y la distribución de N en T. durum Def. Revista de Investigaciones Agropecuarias. INTA 15(1):75–95Google Scholar
  39. 39.
    Lin WZ, Min FJ, Rong HM, Ping YY, Min CH (1997) Planting density effects on assimilation and partitioning of photosynthates during grain filling in the late sown wheat. Photosynthetica 33(2):199–204CrossRefGoogle Scholar
  40. 40.
    Borrás L, Maddonni GA, Otegui ME (2003) Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crops Res 82:13–26CrossRefGoogle Scholar
  41. 41.
    Snaydon RW (1984) Plant demography in an agricultural context. In: Dirzo R, Sarukhan J (eds) Perspectives on plant population biology. Sinauer Associates, Sunderland, pp 389–408Google Scholar
  42. 42.
    Mitchell R (1970) Crop growth and culture. Iowa State University Press, Ames, p 349Google Scholar
  43. 43.
    Nafziger E (1998) Corn, Chapter 2. In: Agronomy handbook, Illinois. 1997–1998. University of Illinois at Urbana-Champaign. College of Agricultural, Consumer and Environmental Sciences Department of crop Sciences. Cooperative Extension Service. Circular 1344, pp 16–26Google Scholar
  44. 44.
    Salazar GM, Moreno RO, Salazar GR, Carrillo ML (1996) Wheat production as affected by seeding rate x fertilization interaction. Cereal Res Commun 24(2):231–237Google Scholar
  45. 45.
    Auld BA, Kemp DR, Medd RW (1983) The influence of spatial arrangement on grain yield of wheat. Aust J Agric Res 34:99–108CrossRefGoogle Scholar
  46. 46.
    Fischer RA, Miles RE (1973) The role of spatial pattern in the competition between crop plants and weeds. A theoretical analysis. Math Biosci 18:335–350CrossRefGoogle Scholar
  47. 47.
    Goodall DW (1960) Quantitative effects of intraspecific competition: an experiment with marigolds. Bull Res Counc Israel 8:181–194Google Scholar
  48. 48.
    Holliday R (1963) The effect of row width on the yield of cereals. Field Crop Abstr 16:71–81Google Scholar
  49. 49.
    Panda SC, Pattanaik A, Rath BS, Tripathy RK, Behera BP, Pant MM (1979) Dependence of plant yield on density and planting pattern. Ann Bot 44:513–516CrossRefGoogle Scholar
  50. 50.
    Nerson H (1980) Effects of population density and number of ears on wheat yield and its components. Field Crop Res 3:225–234CrossRefGoogle Scholar
  51. 51.
    Bullock D, Nielsen R, Nyquist W (1988) A growth analysis of corn grown in conventional and equidistant plant spacing. Crop Sci 28:254–258CrossRefGoogle Scholar
  52. 52.
    Maddonni GA, Cirilo AG, Otegui ME (2006) Row width and maize grain yield. Agron J 98:1532–1543CrossRefGoogle Scholar
  53. 53.
    Panda SC, Pattanaik A, Rath BS, Tripathy RK, Behera B (1996) Response of wheat (Triticum aestivum) to crop geometry and weed management. Indian J Agron 41(4):553–557Google Scholar
  54. 54.
    Panwar RS, Malik RK, Balyan RS, Singh DP (1995) Effect of isoproturon, sowing method and seed rate on weeds and yield of wheat (Triticum aestivum). Indian J Agric Sci 65(2):109–111Google Scholar
  55. 55.
    Thakur SS, Pandey IB, Singh SJ, Mishra SS (1996) Effect of seed rate and row spacing on late sown wheat in alluvial calcareous soil. J Res Birsa Agric Univ 8(2):123–125Google Scholar
  56. 56.
    Lafond GP, Domitruk D, Bailey KL, Derksen D (1996) Effects of row spacing, seeding rate and seed-placed phosphorus on wheat and barley in the canadian prairies. Better Crop Plant Food 80(4):20–22Google Scholar
  57. 57.
    Fawcett RG (1964) Effect of certain conditions on yield of crop plants. Nature 204:858–860CrossRefGoogle Scholar
  58. 58.
    Kemp DR, Auld BA, Medd RW (1983) Does optimizing plant arrangement reduce interference or improve the utilization of space. Agric Syst 12:31–36CrossRefGoogle Scholar
  59. 59.
    Andrade FH, Calviño P, Cirilo A, Barbieri P (2002) Yield responses to narrow rows depends on increased radiation interception. Agron J 94:975–980CrossRefGoogle Scholar
  60. 60.
    Arias S, Satorre EH (1991) Competencia entre trigo (Triticum aestivum) y Brassica sp. El efecto de la densidad del cultivo y la maleza sobre el rendimiento de grano. Actas de la XII Reunión Argentina sobre la maleza y su control (Mar del Plata, Argentina) 2:5–10Google Scholar
  61. 61.
    Flemming GF, Young FL, Ogg AC (1988) Competitive relationships among winter wheat (Triticum aestivum), jointed goatgrass (Aegilop scylindrica), and downy brome (Bromus tectorum). Weed Sci 36:479–486Google Scholar
  62. 62.
    Ross MA, Harper JL (1972) Occupation of biological space during seedling establishment. J Ecol 60:77–88CrossRefGoogle Scholar
  63. 63.
    Satorre EH, Arias SP (1990) Competencia entre trigo (Triticum aestivum) y malezas. III El efecto de la densidad del cultivo y la maleza. Actas II Congreso Nacional de Trigo. Pergamino, Argentina 4, pp 1–10Google Scholar
  64. 64.
    Satorre EH, Ghersa CM (1987) Relationship between canopy structure and weed biomass. Field Crop Res 17:37–43CrossRefGoogle Scholar
  65. 65.
    Solie JB, Solomon SG Jr, Self KP, Peeper TF, Koscelny JA (1991) Reduced row spacing for improved wheat yields in weed-free and weed-infested fields. Trans ASAE 34(4):1654–1660CrossRefGoogle Scholar
  66. 66.
    Bedmar F, Eyherabide JJ, Satorre EH (2000) Bases para el manejo de malezas. In: Andrade y FH, Sadras VO (eds) Bases para el manejo del maíz, el girasol y la soja. Editorial Médica Panamericana SA, Argentina, pp 269–307; 443 pp. ISBN 987-521-016-1Google Scholar
  67. 67.
    Felton WL (1976) The influence of row spacing and plant population on the effect of weed competition in soybeans (Glycine max). Aust J Exp Agric Anim Husb 16:926–931CrossRefGoogle Scholar
  68. 68.
    Mead R (1979) Competition experiments. Biometrics 35:41–54CrossRefGoogle Scholar
  69. 69.
    Ratkowsky DA (1983) Nonlinear regression modelling. A unified practical approach. Marcel Dekker, New York/BaselGoogle Scholar
  70. 70.
    Farazdaghi H, Harris PM (1968) Plant competition and crop yield. Nature 217:289–290CrossRefGoogle Scholar
  71. 71.
    Satorre EH (2008) Estructura especial: respuesta del cultivo a la densidad, distancia entre hileras y uniformidad. In: Satorre EH (ed) Producción de Maíz. AACREA, Unidad de Comunicación y Marketing, Buenos Aires, pp 25–32Google Scholar
  72. 72.
    Francis CA (1986) Multiple cropping: practices and potentials. Macmillan, New YorkGoogle Scholar
  73. 73.
    Andrews DJ, Kassam AH (1976) Importance of multiple cropping in increasing world food supplies. In: Sánchez A, Triplett GB (eds) Multiple cropping. American Society of Agronomy (ASA) Special Publication 27, Madison, pp 1–10Google Scholar
  74. 74.
    Alexander HL, Roelfs AP, Cobbs G (1986) Effects of disease and plant competition on yield in monocultures and mixtures of two wheat cultivars. Plant Pathol 35:457–465CrossRefGoogle Scholar
  75. 75.
    Allard RW, Adams J (1969) Population studies in predominantly self-pollinating species. XIII Intergenotypic competition and population structure in barley and wheat. The Am Nat 103:621–645CrossRefGoogle Scholar
  76. 76.
    Trenbath BR (1974) Biomass productivity of mixtures. Adv Agron 26:177–210CrossRefGoogle Scholar
  77. 77.
    Horwith B (1985) A role for intercropping in modern agriculture. Bioscience 35(5):286CrossRefGoogle Scholar
  78. 78.
    Sarandon SJ, Chamorro AM (2003) Policultivos en los sistemas de producción de granos. In: Satorre EH, Arnold B, Slafer GA, de La Fuente EB, Miralles DJ, Otegui ME, Savin R (eds) Producción de Granos. Bases funcionales para su manejo. Ed. Facultad de Agronomía, University of Buenos Aires, Argentina, pp 353–376Google Scholar
  79. 79.
    Satorre EH (1998) Aumentar los rendimientos en forma sustentable en la Pampa Argentina: Aspectos Generales. In: Solbrig, Vainesman (eds) Hacia una agricultura productiva y sostenible en la Pampa. Orientación Gráfica Editora, Buenos Aires, Argentina, pp 72–98Google Scholar
  80. 80.
    Baigorrí HE (2008) Elección de variedades. In: Satorre EH (ed) Producción de Soja. AACREA Unidad de Comunicación y Marketing, Buenos Aires, pp 33–42Google Scholar
  81. 81.
    Calviño P (2008) El cultivo de Soja de Segunda. In: Satorre EH (ed) Producción de Soja. AACREA, Unidad de Comunicación y Marketing, Buenos Aires, Argentina, pp 33–42; 93–98Google Scholar
  82. 82.
    Satorre EH, Slafer GA (1999) Wheat production systems of the pampas. In: Satorre EH, Slafer GA (eds) Wheat. Ecology and physiology of yield determination. Food Products Press, New York, pp 333–350Google Scholar
  83. 83.
    Giménez VD, Micheloud J, Maddonni GA (2017) Climatic constraints for the maize-soybean system in the humid subtropical region of Argentina. Theor Appl Climatol.
  84. 84.
    Dodds P, Slafer GA, Satorre EH (1990) Sistemas de producción de trigo y soja en el norte de Buenos Aires. Evaluación del cultivo de Trigo. Actas II Congreso Nacional de Trigo, vol 1. Pergamino, Argentina, pp 198–208Google Scholar
  85. 85.
    Ghersa CM, Martinez-Ghersa MA (1989) Cambios ecológicos en los agroecosistemas de la pampa ondulada. Efectos de la introducción de la soja. Ecología 2:182–188Google Scholar
  86. 86.
    Calviño P (2007) Intensificación de Sistemas de producción de granos y el manejo del riesgo en agricultura. In: Actas del Congreso Mundo Soja 2007. SEMA, Buenos Aires, Argentina, pp 75–76Google Scholar
  87. 87.
    Monzon JP, Carrozza TJ, Calviño P, Andrade FH (2005) Efectos del Intercultivo en franjas de maíz y soja sobre el rendimiento- In: Actas del VIII Congreso Nacional de Maíz. AIANBA, Rosario, pp 64–66Google Scholar
  88. 88.
    Baker RJ, Briggs KG (1982) Effects of plant density on the performance of 10 barley cultivars. Crop Sci 22:1164–1167CrossRefGoogle Scholar
  89. 89.
    Federer WT, Conningale JC, Rutger JN, Wijesinha A (1982) Statistical analysis of yields from uniblends and biblends of eight dry bean cultivars. Crop Sci 22:111–115CrossRefGoogle Scholar
  90. 90.
    McGilchrist CA, Trenbath BR (1971) A revised analysis of plant competition experiments. Biometrics 27:659–671CrossRefGoogle Scholar
  91. 91.
    Bleasdale JKA (1966) Plant growth and crop yield. Ann Appl Biol 57:173–182CrossRefGoogle Scholar
  92. 92.
    Darwinkel A (1978) Patterns of tillering and grain production of winter wheat at a wide range of plant densities. Neth J Agric Sci 26:383–398Google Scholar
  93. 93.
    Satorre EH (1988) The competitive ability of spring cereals. PhD thesis, University of Reading, ReadingGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Emilio Horacio Satorre
    • 1
    • 2
    • 3
    Email author
  • Gustavo Angel Maddonni
    • 1
  1. 1.Facultad de Agronomía, Cátedra de CerealiculturaUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.AACREABuenos AiresArgentina
  3. 3.IFEVA, Facultad de AgronomiaUniversity of Buenos AiresBuenos AiresArgentina

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations