Crop Science pp 289-308 | Cite as

Agroecological Basis for Managing Biotic Constraints

  • Claudio M. GhersaEmail author
  • M. Alejandra Martínez-Ghersa
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)


Abiotic factor

A non-living component of the environment, such as soil, nutrients, light, fire, or moisture.


(1) Any aspect of an organism or its parts that is of value in allowing the organism to withstand the conditions of the environment. (2) The evolutionary process by which a species’ genome and phenotypic characteristics change over time in response to changes in the environment.


The science of applying ecological concepts and principles to the design and management of sustainable agroecosystems.


An agricultural system understood as an ecosystem.


The practice of including trees in crop- or animal-production agroecosystems.


An interference interaction in which a plant releases into the environment a compound that inhibits or stimulates the growth or development of other plants.

Beneficial insects – arthropods

Beneficial insects are predators, parasites, or competitors of insect pests, helping to regulate pest...


  1. 1.
    Almekinders CJM, Fresco LO, Struik PC (1995) The need to study and manage variation in agro-ecosystems. Neth J Agric Sci 43:127–142Google Scholar
  2. 2.
    Gliessman SR (1998) Agroecology: ecological processes in sustainable agriculture. Ann Arbor Press, ChelseaGoogle Scholar
  3. 3.
    Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31CrossRefGoogle Scholar
  4. 4.
    Pretty JN (1994) Regenerating agriculture. Earthscan Publications, LondonGoogle Scholar
  5. 5.
    Altieri MA, Nicholls CI (1999) Biodiversity, ecosystem function and insect pest management in agroecosystems. In: Collins WW, Qualset CO (eds) Biodiversity in agroecosystems. CRC Press, Boca Raton, pp 69–84Google Scholar
  6. 6.
    Altieri MA (2002) Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric Ecosyst Environ 93:1–24CrossRefGoogle Scholar
  7. 7.
    Pretty J, Hine R (2000) Feeding the world with sustainable agriculture: a summary of new evidence. Final report from “SAFE-World” research project. University of Essex, ColchesterGoogle Scholar
  8. 8.
    Sumner DR (1982) Crop rotation and plant productivity. In: Recheigl M (ed) CRC handbook of agricultural productivity, vol I. CRC Press, Boca RatonGoogle Scholar
  9. 9.
    Francis CA (1986) Multiple cropping systems. Macmillan, New YorkGoogle Scholar
  10. 10.
    Vandermeer J (1989) The ecology of intercropping. Cambridge University Press, LondonGoogle Scholar
  11. 11.
    Nair PKR (1982) Soil productivity aspects of agroforestry. ICRAF, NairobiGoogle Scholar
  12. 12.
    Pearson CJ, Ison RL (1987) Agronomy of grassland systems. Cambridge University Press, CambridgeGoogle Scholar
  13. 13.
    Finch CV, Sharp CW (1976) Cover crops in California orchards and vineyards. USDA Soil Conservation Service, Washington, DCGoogle Scholar
  14. 14.
    Altieri MA, Rosset P (1996) Agroecology and the conversion of large-scale conventional systems to sustainable management. Int J Environ Stud 50:165–185CrossRefGoogle Scholar
  15. 15.
    Chambers R (1983) Rural development – putting the last first. Longmans Scientific and Technical Publishers/Wiley, Essex/New York, 218 ppGoogle Scholar
  16. 16.
    Vasey DE (1992) An ecological history of agriculture 10,000 BC-AD 10,000. Iowa State University Press, AmesGoogle Scholar
  17. 17.
    Jorgensen SE, Nielsen SN (1996) Application of ecological engineering principles in agriculture. Ecol Eng 7:373–381CrossRefGoogle Scholar
  18. 18.
    Hobbs RJ, Arico S, Aronson J, Baron JS, Bridgewater P, Cramer VA, Epstein PR, Ewel JJ, Klink CA, Lugo AE, Norton D, Ojima D, Richardson DM, Sanderson EW, Valladares F, Villa M, Zamora R, Zobel M (2006) Novel ecosystems: theoretical and management aspects of the new ecological world order. Glob Ecol Biogeogr 15:1–7CrossRefGoogle Scholar
  19. 19.
    Cox GW, Atkins MD (1979) Agricultural ecology. W. H. Freeman & Co., 731 pp. San Francisco, CA, USAGoogle Scholar
  20. 20.
    Cox CM, Garrett KA, Bockus WW (2005) Meeting the challenge of disease management in perennial grain systems. Renew Agric Food Syst 20:15–24CrossRefGoogle Scholar
  21. 21.
    Carrol CR, Vandermeer JH, Rosset PM (1990) Agroecology. McGraw Hill Publishing Company, New YorkGoogle Scholar
  22. 22.
    Shennan C (2008) Biotic interactions, ecological knowledge and agriculture. Philos Trans R Soc Biol 363:717–739CrossRefGoogle Scholar
  23. 23.
    Ghersa CM, Roush ML, Radosevich SR, Cordray SM (1994) Coevolution of agroecosystems and weed management. Bioscience 44:85–94CrossRefGoogle Scholar
  24. 24.
    Settle WH, Ariawan H, Astuti EH, Cahyana W, Hakim AL, Hindayana D, Lestari AS (1996) Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77:1975–1988CrossRefGoogle Scholar
  25. 25.
    Fitter AH, Gilligan CA, Hollingworth K, Kleczkowski A, Twyman RM, Pitchford JW (2005) Biodiversity and ecosystem function in soil. Funct Ecol 19:369–377CrossRefGoogle Scholar
  26. 26.
    Hooper DU, Chapin FS III, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35CrossRefGoogle Scholar
  27. 27.
    Andow DA (1991a) Yield loss to arthropods in vegetationally diverse agroecosystems. Environ Entomol 20:1228–1235CrossRefGoogle Scholar
  28. 28.
    Andow DA (1991b) Vegetational diversity and arthropod population response. Annu Rev Entomol 36:561–586CrossRefGoogle Scholar
  29. 29.
    Brown BJ, Ewel JJ (1987) Herbivory in complex and simple tropical successional ecosystems. Ecology 68:108–116CrossRefGoogle Scholar
  30. 30.
    Prieur-Richard AH, Lavorel S, Linhart YB, Dos Santos A (2002) Plant diversity, herbivory and resistance of a plant community to invasion in Mediterranean annual communities. Oecologia 130:96–104PubMedCrossRefGoogle Scholar
  31. 31.
    Ghersa CM, León RJC (1999) Successional changes in the agroecosystems of the Rolling Pampas. In: Walker LR (ed) Ecosystems of disturbed ground. Elsevier, Amsterdam, pp 487–502Google Scholar
  32. 32.
    Radosevich SR, Holt JS, Ghersa CM (2007) Ecology of weeds and invasive plants. Wiley, New YorkCrossRefGoogle Scholar
  33. 33.
    Baudry J, Poggio SL, Laurent C (2010) Agricultural landscape changes through globalisation and biodiversity effects. In: Primdahl J, Swaffied S (eds) Globalisation and agricultural landscapes. Change patterns and policy trends in developed countries. Cambridge University Press, Cambridge, pp 58–70Google Scholar
  34. 34.
    Ray DK, Foley JA (2013) Increasing global crop harvest frequency: recent trends and future directions. Environ Res Lett 8:044041CrossRefGoogle Scholar
  35. 35.
    Edwards CA (1990) The importance of integration in sustainable agricultural systems. In: Edwards CA, Lal R, Madden P, Miller RH, House G (eds) Sustainable agricultural systems. Soil and Water Conservation Society, Ankey, pp 249–264Google Scholar
  36. 36.
    Altieri MA (1987) Agroecology: the scientific basis of alternative agriculture. Westview Press, BoulderGoogle Scholar
  37. 37.
    Helenius J (1998) Enhancement of predation through within-field diversification. In: Pickett E, Bugg RL (eds) Enhancing biological control. University of California Press, Berkeley, pp 121–160Google Scholar
  38. 38.
    Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303CrossRefGoogle Scholar
  39. 39.
    Freckleton RP, Watkinson AR (2002) Are weed population dynamics chaotic? J Appl Ecol 39:699–707CrossRefGoogle Scholar
  40. 40.
    Weinig C (2005) Rapid evolutionary responses to selection in heterogeneous environments among agricultural and nonagricultural weeds. Int J Plant Sci 166:641–647CrossRefGoogle Scholar
  41. 41.
    Mundt CC (2002) Use of multiline cultivars and cultivar mixtures for disease management. Annu Rev Phytopathol 40:381–400PubMedCrossRefGoogle Scholar
  42. 42.
    Shennan C (2008) Biotic interactions in agroecosystems. Philos Trans R Soc B 363:717–739CrossRefGoogle Scholar
  43. 43.
    Welbaum GE, Sturz AV, Dong ZM, Nowak J (2004) Managing soil microorganisms to improve productivity of agro-ecosystems. Crit Rev Plant Sci 23:175–193CrossRefGoogle Scholar
  44. 44.
    Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  45. 45.
    Anderson RL (2004) Sequencing crops to minimize selection pressure for weeds in the Central Great Plains. Weed Technol 18:157–164CrossRefGoogle Scholar
  46. 46.
    Gurr GM, Wratten SD, Altieri MA (eds) (2004) Ecological engineering for pest management: habitat manipulation for arthropods. CSIRO Publishing, Collingwood, 244 ppGoogle Scholar
  47. 47.
    Shennan C, Pisani Gareau T, Sirrine JR (2004) Agroecological approaches to pest management in the US. In: Pretty J (ed) The pesticide detox, solutions for safe agriculture. Earthscan Publications, London, pp 193–211Google Scholar
  48. 48.
    Moonen AC, Bàrberi P (2008) Functional biodiversity: an agroecosystem approach. Agric Ecosyst Environ 127:7–21CrossRefGoogle Scholar
  49. 49.
    Mead R, Riley J, Dear K, Singh SP (1986) Stability comparison of intercropping and monocropping systems. Biometrics 42:253–266CrossRefGoogle Scholar
  50. 50.
    Zhu Y, Fen H, Wang Y, Li Y, Chen J, Hu L, Mundt CC (2000) Genetic diversity and disease control in rice. Nature 406:718–772PubMedCrossRefGoogle Scholar
  51. 51.
    Schoonhoven LM, van Loon JJA, Dicke M (2006) Insect-plant biology. Oxford University Press, OxfordGoogle Scholar
  52. 52.
    Xia J (1994) An integrated cotton insect pest management system for cotton-wheat intercropping in North China. In: Constable GA, Forrester NW (eds) Proceedings of the world cotton research conference – I: challenging the future. CSIRO, Brisbane, 617 ppGoogle Scholar
  53. 53.
    Xia J (1997) Biological control of cotton aphid (Aphis gossypii Glover) in cotton (inter) cropping systems in China; a simulation study. PhD dissertation, Landouwuniversiteit, Wageningen, 173 ppGoogle Scholar
  54. 54.
    Liang W, Huang M (1994) Influence of citrus orchard ground cover plants on arthropod communities in China: a review. Agric Ecosyst Environ 50:29–37CrossRefGoogle Scholar
  55. 55.
    Smith D, Papacek DF (1991) Studies of the predatory mite Amblyseius victoriensis (Acarina: Phytoseiidae) in citrus orchards in south-east Queensland: control of Tegolophus australis and Phyllocoptruta oleivora (Acarina: Eriophyidae), effects of pesticides, alternative host plants and augmentative release. Exp Appl Acarol 12:195–217CrossRefGoogle Scholar
  56. 56.
    Lys JA (1994) The positive influence of strip-management on ground beetles in a cereal field: increase, migration and overwintering. In: Desender K, Dufrene M, Loreau M, Luff ML, Maelfait JP (eds) Carabid beetles: ecology and evolution. Kluwer, Dordrecht/Boston/London, pp 451–455CrossRefGoogle Scholar
  57. 57.
    Lys JA, Zimmermann M, Netwig W (1994) Increase in activity density and species number of carabid beetles in cereals as a result of strip-management. Entomol Exp Appl 73:1–9CrossRefGoogle Scholar
  58. 58.
    Hausmmann A (1996) The effects of weed strip-management on pests and beneficial arthropods in winter wheat fields. Z Pflanzenkrankh Pflanzenschutz 103:70–81Google Scholar
  59. 59.
    Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Monogr 43:94–125CrossRefGoogle Scholar
  60. 60.
    Smith JG (1976) Influence of crop background on aphids and other phytophageous insects on Brussels sprouts. Ann Appl Biol 83:1–13CrossRefGoogle Scholar
  61. 61.
    Finch S, Collier RH (2000) Host-plant selection by insects – a theory based on ‘appropriate/inappropriate landings’ by pest insects of cruciferous plants. Entomol Exp Appl 96:91–102CrossRefGoogle Scholar
  62. 62.
    Finch S, Kienegger M (1997) A behavioural study to help clarify how undersowing with clover affects host plant selection by pest insects of brassica crops. Entomol Exp Appl 84:165–172CrossRefGoogle Scholar
  63. 63.
    Power AG, Flecker AS (2008) The role of vector diversity on disease dynamics. In: Ostfeld RS, Keesing F, Eviner V (eds) Infectious disease ecology: effects of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton, pp 30–48Google Scholar
  64. 64.
    Cook SM, Khan ZR, Pickett JA (2007) The use of push–pull strategies in integrated pest management. Annu Rev Entomol 52:375–400PubMedCrossRefGoogle Scholar
  65. 65.
    Uvah I, Coaker TH (1984) Effect of mixed cropping on some insect pests of carrots and onions. Entomol Exp Appl 36:159–167CrossRefGoogle Scholar
  66. 66.
    Kimani SM, Chhabra SC, Lwande W, Khan ZR, Hassanali A, Pickett JA (2000) Airborne volatiles from Melinis minutiflora P. Beauv., a non-host plant of the spotted stem borer. J Essent Oil Res 12:221–224CrossRefGoogle Scholar
  67. 67.
    Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annu Rev Entomol 51:285–308PubMedCrossRefGoogle Scholar
  68. 68.
    Pyke B, Rice M, Sabine B, Zalucki MP (1987) The push-pull strategy – behavioural control of Heliothis. Aust Cotton Grow May–July:7–9Google Scholar
  69. 69.
    Miller JR, Cowles RS (1990) Stimulo-deterrent diversion: a concept and its possible application to onion maggot control. J Chem Ecol 16:3197–3212PubMedCrossRefGoogle Scholar
  70. 70.
    Hokkanen H (1991) Trap cropping in pest management. Annu Rev Entomol 36:119–138CrossRefGoogle Scholar
  71. 71.
    Khan Z, Midega C, Pittchar J, Pickett J, Bruce T (2011) Push–pull technology: a conservation agriculture approach for integrated management of insect pests, weeds and soil health in Africa. Int J Agric Sustain 9:162–170CrossRefGoogle Scholar
  72. 72.
    Gliessman SR (1995) Sustainable agriculture: an agroecological perspective. Adv Plant Pathol 11:45–57CrossRefGoogle Scholar
  73. 73.
    Knudsen IMB, Debosz K, Hockenhull J, Funck JD, Elmholt S (1999) Suppressiveness of organically and conventionally managed soils towards brown foot rot of barley. Appl Soil Ecol 12:61–72CrossRefGoogle Scholar
  74. 74.
    LaMondia J, Elmer WH, Mervosh TL, Cowles RS (2002) Integrated management of strawberry pests by rotation and intercropping. Crop Prot 21:837–846CrossRefGoogle Scholar
  75. 75.
    Hooks CRR, Wang K-H, Ploeg A, McSorley R (2010) Using marigold (Tagetes spp.) as a over crop to protect crops from plant-paraitic nematodes. Appl Soil Ecol 46:307–320CrossRefGoogle Scholar
  76. 76.
    Müller J (1999) The economic importance of Heterodera schachtii in Europe. Helminthologia 36:205–213Google Scholar
  77. 77.
    Krupinsky JM, Bailey KL, McMullen MP, Gossen BD, Turkington TK (2002) Managing plant disease risk in diversified cropping systems. Agron J 94:198–209CrossRefGoogle Scholar
  78. 78.
    Bengtsson J, Ahnstrom J, Weibull A-C (2005) The effects of organic agriculture on biodiversity and abundance: a meta-analysis. J Appl Ecol 42:261–269CrossRefGoogle Scholar
  79. 79.
    Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. Proc R Soc B 273:1715–1727PubMedCrossRefGoogle Scholar
  80. 80.
    Rand TA, van Veen FJF, Tscharntke T (2012) Landscape complexity differentially benefits generalized fourth, over specialized third, trophic level natural enemies. Ecography 35:97–104CrossRefGoogle Scholar
  81. 81.
    Mundt CC, Sacket KE, Wallace LD (2011) Landscape heterogeneity and disease spread: experimental approaches with a plant pathogen. Ecol Appl 21:321–328PubMedCrossRefGoogle Scholar
  82. 82.
    Real LA, Biek R (2007) Spatial dynamics and genetics of infectious diseases on heterogeneous landscapes. J R Soc Interface 4:935–948PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    O’Rourke ME, Rienzo-Stack K, Power AG (2011) A multi-scale, landscape approach to predicting insect populations in agroecosystems. Ecol Appl 21:1782–1791PubMedCrossRefGoogle Scholar
  84. 84.
    Chaplin-Kramer R, Kremen C (2012) Pest control experiments show benefits of complexity at landscape and local scales. Ecol Appl 22:1936–1948PubMedCrossRefGoogle Scholar
  85. 85.
    Tylianakis JM, Romo CM (2010) Natural enemy diversity and biological control: making sense of the context-dependency. Basic Appl Ecol 11:657–668CrossRefGoogle Scholar
  86. 86.
    Colunga-G M, Gage SH, Dyer LE (1998) The insect community. In: Cavigelli MA, Deming SR, Probyn LK, Harwood RR (eds) Michigan field crop ecology, managing biological processes for productivity and environmental quality. Michigan State University Extension bulletin E-2646. Michigan State University Extension, East Lansing, pp 59–70Google Scholar
  87. 87.
    Purtauf T, Roschewitz I, Dauber J, Thies C, Tscharntke T, Wolters V (2005) Landscape context of organic and conventional farms, influences on carabid beetle diversity. Agric Ecosyst Environ 108:165–174CrossRefGoogle Scholar
  88. 88.
    Roschewitz I, Hucker M, Tscharntke T, Thies C (2005a) The influence of landscape context and farming practices on parasitism of cereal aphids. Agric Ecosyst Environ 108:218–227CrossRefGoogle Scholar
  89. 89.
    Roschewitz I, Gabriel D, Tscharntke T, Thies C (2005b) The effects of landscape complexity on arable weed species diversity in organic and conventional farming. J Appl Ecol 42:873–882CrossRefGoogle Scholar
  90. 90.
    Baudry J, Papy F (2001) The role of landscape heterogeneity in the sustainability of cropping systems. In: Nösberger J, Geiger HH, Struik PC (eds) Crop science – progress and prospects. Cabi Publishing, OxonGoogle Scholar
  91. 91.
    Kalkhoven JTR (1993) Survival of populations and the scale of the fragmented agricultural landscape. In: Bunce RGH, Ryszkowski L, Paoletti MG (eds) Landscape ecology and agroecosystems. Lewis Publishers, Boca Raton, pp 83–90Google Scholar
  92. 92.
    Shennan C, Bode CA (2002) Integrating wetland habitat with agriculture. In: Jackson LL, Jackson D (eds) The farm as a natural habitat. Island Press, Washington, DC, pp 189–204Google Scholar
  93. 93.
    Wilby A, Thomas MB (2002) Natural enemy diversity and pest control, patterns of pest emergence with agricultural intensification. Ecol Lett 5:353–360CrossRefGoogle Scholar
  94. 94.
    Chaplin-Kramer R, O’Rourke ME, Blitzer EJ, Kremen C (2011) A meta-analysis of crop pest and natural enemy response to landscape complexity. Ecol Lett 14:922–932PubMedCrossRefGoogle Scholar
  95. 95.
    Tscharntke T, Rand TA, Bianchi FJJA (2005) The landscape context of trophic interactions: insect spill-over across the crop non-crop interface. Ann Zool Fenn 42:421–432Google Scholar
  96. 96.
    Martin EA, Reineking B, Seo B, Steffan-Dewenter I (2013) Natural enemy interactions constrain pest control in complex agricultural landscapes. PNAS 110:5534–5539PubMedCrossRefGoogle Scholar
  97. 97.
    Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Annu Rev Ecol Evol Syst 40:573–592CrossRefGoogle Scholar
  98. 98.
    Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237CrossRefGoogle Scholar
  99. 99.
    Janssen A, Sabelis MW, Magalhães S, Montserrat M, Van Der Hammen T (2007) Habitat structure affects intraguild predation. Ecology 88:2713–2719PubMedCrossRefGoogle Scholar
  100. 100.
    Landis DA, Menalled FD, Costamagna AC, Wilkinson TK (2005) Manipulating plant resources to enhance beneficial arthropods in agricultural landscapes. Weed Sci 53:902–908CrossRefGoogle Scholar
  101. 101.
    Burel F, Baudry J, Butet A, Clergeau P, Delettre Y, Le Cœur D, Dubs F, Morvan N, Paillat G, Petit S, Thenail C, Brunel E, Lefeuvre JC (1998) Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecol 19:47–60CrossRefGoogle Scholar
  102. 102.
    Jervis MS, Kidd MAC, Fitton MD, Huddleson T, Dawah HA (1993) Flower visiting by hymenopteran parasitoids. J Nat Hist 27:287–294CrossRefGoogle Scholar
  103. 103.
    Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera, Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera, Yponomeutidae). Environ Entomol 24:1726–1735CrossRefGoogle Scholar
  104. 104.
    Bugg RL, Ehler LE, Wilson LT (1987) Effect of common knotweed (Polygonum aviculare) on abundance and efficiency of insect predators of crop pests. NAL/Hilgardia 55:1–53Google Scholar
  105. 105.
    Pollard E (1971) Hedges. VI. Habitat diversity and crop pests, a study of Brevicoryne brassica and its syrphid predators. J Appl Ecol 8:751–780CrossRefGoogle Scholar
  106. 106.
    Bugg RL, Pickett CH (1998) Introduction, enhancing biological control – habitat management to promote natural enemies of agricultural pests. In: Pickett CH, Bugg RL (eds) Enhancing biological control. Habitat management to promote natural enemies of agricultural pests. The Regents of the University of California, Berkeley, pp 1–23Google Scholar
  107. 107.
    Rosenheim JA, Limburg DD, Colfer RG (1999) Impact of generalist predators on a biological control agent, Chrysoperla carnea, direct observations. Ecol Appl 9:409–417CrossRefGoogle Scholar
  108. 108.
    Nicholls CI, Parrella M, Altieri MA (2001) The effects of a vegetational corridor on the abundance and dispersal of insect biodiversity within a northern California organic vineyard. Landsc Ecol 16:133–146CrossRefGoogle Scholar
  109. 109.
    Corbett A (1998) The importance of movement in the response of natural enemies to habitat manipulation. In: Pickett CH, Bugg RL (eds) Enhancing biological control, habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, pp 25–48Google Scholar
  110. 110.
    Doutt RL, Nakata J (1973) The rubus leafhopper and its egg parasitoid, an endemic biotic system useful in grape pest mangement. Environ Entomol 2:381–386CrossRefGoogle Scholar
  111. 111.
    Murphy BC, Rosenheim JA, Granett J, Pickett CH, Dowell RV (1998) Measuring the impact of a natural enemy refuge, the prune tree/vineyard example. In: Pickett CH, Bugg RL (eds) Enhancing biological control, habitat management to promote natural enemies of agricultural pests. University of California Press, Berkeley, pp 297–309Google Scholar
  112. 112.
    Ricketts TH, Daily GC, Ehrlich PR, Michener CD (2004) Economic value of tropical forest to coffee production. Proc Natl Acad Sci 101:12579–12582PubMedCrossRefGoogle Scholar
  113. 113.
    Thies C, Tscharntke T (1999) Landscape structure and biological control in agroecosystems. Science 285:893–895PubMedCrossRefGoogle Scholar
  114. 114.
    Pullaro TC, Marino PC, Jackson DM, Harrison HF, Keinath AP (2006) Effects of killed cover crop mulch on weeds, weed seeds, and herbivores. Agric Ecosyst Environ 115:97–104CrossRefGoogle Scholar
  115. 115.
    Menalled FD, Marino PC, Gage SH, Landis D (1999) Does agricultural landscape structure affect parasitism and parasitoid diversity? Ecol Appl 9:634–641CrossRefGoogle Scholar
  116. 116.
    Landis DA, Wratten SD, Gurr GA (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201PubMedCrossRefGoogle Scholar
  117. 117.
    Paredes D, Cayuela L, Campos M (2013) Synergistic effects of ground cover and adjacent vegetation on natural enemies of olive insect pests. Agric Ecosyst Environ 173:72–80CrossRefGoogle Scholar
  118. 118.
    Liebman M, Davis AS (2000) Integration of soil, crop and weed management in low-external-input farming systems. Weed Res 40:27–47CrossRefGoogle Scholar
  119. 119.
    Westerman P, Liebman M, Menalled FD, Heggenstaller AH, Hartzler RG, Dixon PM (2005) Are many little hammers effective? – velvetleaf (Abutilon theophrasti) population dynamics in two- and four-year crop rotation systems. Weed Sci 53:382–392CrossRefGoogle Scholar
  120. 120.
    Heggenstaller AH, Menalled FD, Liebman M, Westerman PR (2006) Seasonal patterns in post-dispersal seed predation of Abutilon theophrasti and Setaria faberi in three-cropping systems. J Appl Ecol 43:999–1010CrossRefGoogle Scholar
  121. 121.
    Ghorbani R, Leifart C, Seel W (2005) Biological control of weeds with antagonistic plant pathogens. Adv Agron 86:191–225CrossRefGoogle Scholar
  122. 122.
    Albrecht M, Duelli P, Muller C, Kleijn D, Schmid B (2007) The Swiss agri-environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. J Appl Ecol 44:813–822CrossRefGoogle Scholar
  123. 123.
    Ricketts TH, Daily GC, Ehrlich PR, Fay JP (2001) Countryside biogeography of moths in a fragmented landscape, biodiversity in native and agricultural habitats. Conserv Biol 15:378–388CrossRefGoogle Scholar
  124. 124.
    Marshall EJP, Brown VK, Boatman ND, Lutman PJW, Squire GR, Ward LK (2003) The role of weeds in supporting biological diversity within crop fields. Weed Res 43:77–89CrossRefGoogle Scholar
  125. 125.
    Marshall EJP, Moonen AC (2002) Field margins in northern Europe: their functions and interactions with agriculture. Agric Ecosyst Environ 89:5–21CrossRefGoogle Scholar
  126. 126.
    Holland JM, Thomas CFG, Birkett T, Southway S, Oaten H (2005) Farm-scale spatiotemporal dynamics of predatory beetles in arable crops. J Appl Ecol 42:1140–1152CrossRefGoogle Scholar
  127. 127.
    van Groenigen JW, Burns EG, Eadie JM, Horwath WR, van Kessel C (2003) Effects of foraging waterfowl in winter flooded rice fields on weed stress and residue decomposition. Agric Ecosyst Environ 95:289–296CrossRefGoogle Scholar
  128. 128.
    Benton TG, Vickery JA, Wilson JD (2003) Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol Evol 18:182–188CrossRefGoogle Scholar
  129. 129.
    Smith MR, Charvat I, Jacobson RI (1998) Arbuscular mycorrhizae promote establishment of prairie species in a tall grass prairie restauration. Can J Bot 76:1947–1954Google Scholar
  130. 130.
    Requena N, Perez Solis E, Ascon-Aguilar C, Jeffries P, Bareal JM (2001) Management of indigenous plant-microbe symbiosis aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Thrall PH, Milssom DA, Jeavons AC, Waavers M, Harvey GR, Bagnall J, Brockwell J (2005) Studies on land restoration: seed inoculation with effective root-nodule bacteria enhances the establishment, survival and growth of Acacia species. J Appl Ecol 42:740–751CrossRefGoogle Scholar
  132. 132.
    Kiers ET, West SA, Denison RF (2002) Mediating mutualisms: farm management practices and evolutionary changes in symbiont cooperation. J Appl Ecol 39:745–754CrossRefGoogle Scholar
  133. 133.
    Thrall PH, Oakeshott JG, Fitt G, Southerton S, Burdon JJ, Sheppard A, Russell RJ et al (2011) Evolution in agriculture: the application of evolutionary approaches to the management of biotic interactions in agroecosystems. Evol Appl 4:200–215PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Claudio M. Ghersa
    • 1
    Email author
  • M. Alejandra Martínez-Ghersa
    • 1
  1. 1.IFEVA, Facultad de Agronomía, Universidad de Buenos Aires, CONICET.Buenos AiresArgentina

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations