Crop Science pp 269-285 | Cite as

Improving Grain Quality in Oil and Cereal Crops

  • Déborah P. RondaniniEmail author
  • Lucas Borrás
  • Roxana Savin
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)



Monocotyledon plant grains that accumulate starch as the main storage substance for subsequent germination.

Genotype × environment interaction

Relative changes in genotype performance when grown under different environments.

Grain development

Structural and functional changes that occur in the fertilized ovary after cell division and differentiation, ultimately producing a mature grain capable of germinating.

Grain growth

Irreversible increase in grain weight and size caused by reserves accumulation.

Grain quality

Group of grain characteristics and measurable attributes (objectively or subjectively) to meet the clients’ requirements (i.e., customer, industry, consumers).


Dicotyledon plant grains that accumulate oil as the main storage substance for subsequent germination. Oilseed crop seeds (sunflower, rapeseed, ground pea) are composed of 40–50% oil and 20–30% protein while proteo-oil crop seeds (soybean, lupine) comprise 15–30% oil and 30–40% protein.



Primary Literature

  1. 1.
    Slafer GA, Satorre EH (1999) Wheat production systems of the pampas. In: Satorre EH, Slafer GA (eds) Wheat: ecology and physiology of yield determination. Food Product Press, New York, pp 333–343Google Scholar
  2. 2.
    The state of food security and nutrition in the world. 2017. FAO. Available in
  3. 3.
    Wrigley CW (1994) Developing better strategies to improve grain quality for wheat. Aust J Agric Res 45:1–7CrossRefGoogle Scholar
  4. 4.
    Boesewinkel FD, Bouman F (1995) The seed: structure and function. In: Kigel J, Galili G (eds) Seed development and germination. Marcel Dekker, New York, pp 1–24Google Scholar
  5. 5.
    Berger F, Grini PE, Schnittger A (2006) Endosperm: an integrator of seed growth and development. Curr Opin Plant Biol 9:664–670PubMedCrossRefGoogle Scholar
  6. 6.
    Meyer CJ, Steudle E, Peterson CA (2007) Patterns and kinetics of water uptake by soybean seeds. J Exp Bot 58:717–732PubMedCrossRefGoogle Scholar
  7. 7.
    Egli DB (1998) Seed biology and the yield of grain crops. CAB International, New York, 178 pGoogle Scholar
  8. 8.
    Baskin JM, Baskin CC (2004) A classification system for seed dormancy. Seed Sci Res 14:1–16Google Scholar
  9. 9.
    Millet E, Pinthus MJ (1984) The association between grain volume and grain weight in wheat. J Cereal Sci 2:31–35CrossRefGoogle Scholar
  10. 10.
    Calderini DF, Abledo LG, Slafer GA (2000) Physiological maturity in wheat based on kernel water and dry matter. Agron J 92:895–901CrossRefGoogle Scholar
  11. 11.
    Rondanini DP, Mantese AI, Savin R, Hall AJ (2009) Water content dynamics of achene, pericarp and embryo in sunflower: associations with achene potential size and dry-down. Eur J Agron 30:53–62CrossRefGoogle Scholar
  12. 12.
    Lizana XC, Riegel R, Gomez LD, Herrera J, Isla A, McQueen-Mason SJ, Calderini DF (2010) Expansins expression is associated with grain size dynamics in wheat (Triticum aestivum L.) J Exp Bot 61:1147–1157PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Putt ED (1997) Early history of sunflower. In: Schneiter AA (ed) Sunflower technology and production. American Society of Agronomy, Madison, pp 1–19Google Scholar
  14. 14.
    Egli DB, TeKrony DM (1997) Species differences in seed water status during seed maduration and germination. Seed Sci Res 21:289–294Google Scholar
  15. 15.
    Westgate ME, Boyer JS (1986) Water status and the developing grain of maize. Agron J 78:714–719CrossRefGoogle Scholar
  16. 16.
    Egli DB (1990) Seed water relations and the regulation of the duration of seed growth in soybean. J Exp Bot 41:243–248CrossRefGoogle Scholar
  17. 17.
    Borrás L, Westgate ME, Otegui ME (2003) Control of kernel weight and kernel water relations by post-flowering source-sink ratio in maize. Ann Bot 91:857–867PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Borrás L, Westgate ME (2006) Predicting maize kernel sink capacity early in development. Field Crop Res 95:223–233CrossRefGoogle Scholar
  19. 19.
    Swank JC, Egli DB, Pfeiffer TW (1987) Seed growth characteristics of soybean genotypes differing in duration of seed fill. Crop Sci 27:85–89CrossRefGoogle Scholar
  20. 20.
    Rondanini DP, Savin R, Hall AJ (2007) Estimation of physiological maturity in sunflower as a function of fruit water concentration. Eur J Agron 26:295–309CrossRefGoogle Scholar
  21. 21.
    Schnyder H, Baum U (1992) Growth of the grain of wheat (Triticum aestivum L.): the relationship between water content and dry matter accumulation. Eur J Agron 1:51–57CrossRefGoogle Scholar
  22. 22.
    Gambín BL, Borrás L (2010) Resource distribution and the trade-off between seed number and weight: a comparison across crop species. Ann Appl Biol 156:91–102CrossRefGoogle Scholar
  23. 23.
    Borrás L, Zinselmeier C, Senior ML, Westgate ME, Muszynski MG (2009) Characterization of grain filling patterns in diverse maize germplasm. Crop Sci 49:999–1009CrossRefGoogle Scholar
  24. 24.
    Borrás L, Gambín BL (2010) Trait dissection of maize kernel weight: towards integrating hierarchical scales using a plant growth approach. Field Crop Res 118:1–12CrossRefGoogle Scholar
  25. 25.
    Patrick JW (1997) Phloem unloading: sieve element unloading and post-sieve element transport. Annu Rev Plant Biol 48:191–222CrossRefGoogle Scholar
  26. 26.
    Patrick JW, Offler CE (2001) Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52:551–564PubMedCrossRefGoogle Scholar
  27. 27.
    Egli DB (1981) Species differences in seed growth characteristics. Field Crop Res 4:1–12CrossRefGoogle Scholar
  28. 28.
    Sadras VO (2007) Evolutionary aspects of the trade-off between seed size and number in crops. Field Crop Res 100:125–138CrossRefGoogle Scholar
  29. 29.
    Borrás L, Curá JA, Otegui ME (2002) Maize kernel composition and post-flowering source-sink ratio. Crop Sci 42:781–790CrossRefGoogle Scholar
  30. 30.
    Jenner CF, Ugalde TD, Aspinall D (1991) The physiology of starch and protein deposition in the endosperm of wheat. Aust J Plant Physiol 18:211–226Google Scholar
  31. 31.
    Savin R, Molina-Cano JL (2002) Changes in malting quality and its determinants in response to abiotic stress. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley science: recent advances from molecular biology to agronomy of yield and quality. Food Product Press, New York, pp 523–544Google Scholar
  32. 32.
    Rotundo JL, Borrás L, Westgate ME, Orf JH (2009) Relationship between assimilates supply per seed and soybean seed composition. Field Crop Res 112:90–96CrossRefGoogle Scholar
  33. 33.
    Seebauer JR, Singletary GW, Krumpelman PM, Ruffo ML, Below FE (2010) Relationship of source and sink in determining kernel composition of maize. J Exp Bot 61:511–519PubMedCrossRefGoogle Scholar
  34. 34.
    Shewry PR, Hey SJ (2015) The contribution of wheat to human diet and health. Food Energy Secur 4:178–202PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structures and biosynthesis. Plant Cell 7:945–956PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Bonafede MD, Tranquilli G, Pflüger LA, Peña RJ, Dubcovsky J (2015) Effect of allelic variation at the Glu-3/Gli-1 loci on breadmaking quality parameters in hexaploid wheat (Triticum aestivum L.) J Cereal Sci 62:143–150PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Shewry PR, Hawkesford MJ, Piironen V, Lampi AM, Gebruers K, Boros D, Andersson AAM, Åman P, Rakszegi M, Bedo Z, Ward JL (2013) Natural variation in grain composition of wheat and related cereals. J Agric Food Chem 61:8295–8303PubMedCrossRefGoogle Scholar
  38. 38.
    Meints B, Cuesta-Marcos A, Fisk S, Ross A, Hayes P (2013) Food barley quality improvement and germplasm utilization. In: Zhang G, Li C (eds) Exploration, identification and utilization of barley germplasm. Academic/Elsevier, New York, pp 41–74Google Scholar
  39. 39.
    Mantese AI, Medan D, Hall AJ (2006) Achene structure, development and lipid accumulation in sunflower cultivars differing in oil content at maturity. Ann Bot 97:999–1010PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tanaka W, Mantese AI, Maddonni GA (2009) Pollen source effects on growth of kernel structures and embryo chemical compounds in maize. Ann Bot 104:325–334PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Garcés R, Mancha M (1989) Oleate desaturation in seeds of two genotypes of sunflower. Phytochemistry 28:2593–2595CrossRefGoogle Scholar
  42. 42.
    Ohlrogge J (1997) Regulation of fatty acid synthesis. Annu Rev Plant Physiol Plant Mol Biol 48:109–136PubMedCrossRefGoogle Scholar
  43. 43.
    Harwood JL (1996) Recent advances in the biosynthesis of plant fatty acids. Biochim Biophys Acta 1301:7–56PubMedCrossRefGoogle Scholar
  44. 44.
    Velasco L, Perez-Vich B, Fernández-Martínez JM (2004) Grain quality in oil crops. In: Benech-Arnold RL, Sánchez RA (eds) Handbook of seed physiology: applications to agriculture. Food Products Press/The Haworth Press, New York, pp 389–405Google Scholar
  45. 45.
    Rotundo JL, Westgate ME (2009) Meta-analysis of environmental effects on soybean seed composition. Field Crop Res 110:147–156CrossRefGoogle Scholar
  46. 46.
    Carrera CS, Dardanelli JL, Soldini DO (2014) Chemical compounds related to nutraceutical and industrial qualities of non-transgenic soybean genotypes. J Sci Food Agric 94:1463–1469PubMedCrossRefGoogle Scholar
  47. 47.
    Peña RJ, Trethowan R, Pfeiffer WH, van Ginkel M (2002) Quality (end-use) improvement in wheat compositional, genetic, and environmental factors. J Crop Prod 5:1–37CrossRefGoogle Scholar
  48. 48.
    Park D, Allen KGD, Stermitz FR, Maga JA (2000) Chemical composition and physical characteristics of unpopped popcorn hybrids. J Food Comp Anal 13:921–934CrossRefGoogle Scholar
  49. 49.
    Thomison PR, Geyer AB (1999) Evaluation of TC-Blend7 used in high oil maize production. Plant Var Seeds 12:99–112Google Scholar
  50. 50.
    Rasheed A, Xia X, Yan Y, Appels R, Mahmood T, He Z (2014) Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications. J Cereal Sci 60:11–24CrossRefGoogle Scholar
  51. 51.
    Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204PubMedCrossRefGoogle Scholar
  52. 52.
    Marcotuli I, Gadaleta A, Mangini G, Signorile AM, Zacheo SA, Blanco A, Simeone R, Colasuonno P (2017) Development of a high-density SNP-based linkage map and detection of QTL for β-glucans, protein content, grain yield per spike and heading time in durum wheat. Int J Mol Sci 18:pii: E1329CrossRefGoogle Scholar
  53. 53.
    Alvarez Prado S, López CG, Senior ML, Borrás L (2014) The genetic architecture of maize (Zea mays L.) kernel weight determination. G3 (Bethesda) 4:1611–1621CrossRefGoogle Scholar
  54. 54.
    Wardlaw IF, Wrigley C (1994) Heat tolerance in temperate cereals: an overview. Aust J Plant Physiol 21:695–703Google Scholar
  55. 55.
    Savin R, Nicolas M (1999) Effects of timing of heat stress and drought on growth and quality of barley grains. Aust J Agric Res 50:357–364CrossRefGoogle Scholar
  56. 56.
    Stone PJ, Nicolas ME (1996) Effect of timing of heat stress during grain filling on two wheat varieties differing in heat tolerance. II. Fractional protein accumulation. Aust J Plant Physiol 23:739–749Google Scholar
  57. 57.
    Easterling D, Horton B, Jones P, Peterson T, Karl T, Parker D, Salinger M, Razuvayev V, Plummer N, Jamason P, Folland C (1997) Maximum and minimum temperature trends for the globe. Science 277:364–367CrossRefGoogle Scholar
  58. 58.
    Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997PubMedCrossRefGoogle Scholar
  59. 59.
    Hansen J, Sato M, Ruedy R (2012) Perception of climate change. PNAS 109:2415–2423CrossRefGoogle Scholar
  60. 60.
    Hawker JS, Jenner CF (1993) High temperature affects the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Aust J Plant Physiol 20:197–209Google Scholar
  61. 61.
    Stone PJ, Gras PW, Nicolas ME (1997) The influence of recovery temperature on the effects of a brief heat shock on wheat. III. Grain protein composition and dough properties. J Cereal Sci 25:129–141CrossRefGoogle Scholar
  62. 62.
    Canvin D (1965) The effect of temperature on the oil content and fatty acid composition of the oils from several oil seed crops. Can J Exp Bot 43:63–69CrossRefGoogle Scholar
  63. 63.
    Izquierdo NG, Martínez-Force E, Garcés R, Aguirrezábal LA, Zambelli A, Reid R (2016) Temperature effect on triacylglycerol species in seed oil from high stearic sunflower lines with different genetic backgrounds. J Sci Food Agric 96:4367–4376PubMedCrossRefGoogle Scholar
  64. 64.
    Garcés R, Mancha M (1991) In vitro oleate desaturase in developing sunflower seeds. Phytochemistry 30:2127–2130CrossRefGoogle Scholar
  65. 65.
    Alberio C, Izquierdo N, Galella T, Zuil S, Reid R, Zambelli A, Aguirrezabal LAN (2016) A new sunflower high oleic mutation confers stable oil grain fatty acid composition across environments. Eur J Agron 73:25–33CrossRefGoogle Scholar
  66. 66.
    Carrera CS, Dardanelli JL (2016) Changes in the relationship between temperature during the seed-filling period and soya bean seed isoflavones under water-deficit conditions. J Agron Crop Sci 202:421–432CrossRefGoogle Scholar
  67. 67.
    Izquierdo N, Aguirrezábal LAN (2008) Genetic variability in the response of fatty acid composition to minimum night temperature during grain filling in sunflower. Field Crop Res 106:116–125CrossRefGoogle Scholar
  68. 68.
    Baux A, Colbach N, Allirand JM, Jullien A, Ney B, Pellet D (2013) Insights into temperature effects on the fatty acid composition of oilseed rape varieties. Eur J Agron 49:12–19CrossRefGoogle Scholar
  69. 69.
    Echarte MM, Angeloni P, Jaimes F, Tognetti J, Izquierdo NG, Valentinuz O, Aguirrezabal LAN (2010) Night temperature and intercepted solar radiation additively contribute to oleic acid percentage in sunflower oil. Field Crop Res 119:27–35CrossRefGoogle Scholar
  70. 70.
    Izquierdo N, Aguirrezábal LAN, Andrade F, Cantarero M (2006) Modeling the response of fatty acid composition to temperature in a traditional sunflower hybrid. Agron J 98:451–461CrossRefGoogle Scholar
  71. 71.
    Martre P (2006) Modelling quality traits and their genetic variability for wheat. Eur J Agron 25:75–78CrossRefGoogle Scholar
  72. 72.
    Nuttall JG, O’Leary GJ, Panozzo JF, Walker CK, Barlow KM, Fitzgerald GJ (2017) Models of grain quality in wheat – a review. Field Crop Res 202:136–145CrossRefGoogle Scholar
  73. 73.
    Triboï E, Martre P, Triboï-Blondel AM (2003) Environmentally-induced changes in protein composition in developing grains of wheat are related to changes in total protein content. J Exp Bot 54:1731–1742PubMedCrossRefGoogle Scholar
  74. 74.
    Champolivier L, Merrien A (1996) Evolution de la teneur en huile et de sa composition en acides gras chez deux variétés de tournesol (oléique ou non) sous l'effet de températures différentes pendant la maturation des graines. Oleagineux Corps Gras Lipides 3:140–145Google Scholar
  75. 75.
    Rotundo JL, Westgate ME (2010) Rate and duration of seed component accumulation in water-stressed soybean. Crop Sci 50:676–684CrossRefGoogle Scholar
  76. 76.
    Flagella Z, Rotunno T, Tarantino E, Di Caterina R, De Caro A (2002) Changes in seed yield and oil fatty acid composition of high oleic sunflower (Helianthus annuus L.) hybrids in relation to the sowing date and the water regime. Eur J Agron 17:221–230CrossRefGoogle Scholar
  77. 77.
    Payne PI, Holt LM, Worland AJ, Law CN (1982) Structural and genetical studies on the high-molecular-weight subunits of wheat glutenin. Theor Appl Genet 63:129–138PubMedCrossRefGoogle Scholar
  78. 78.
    Wieser H, Gutser R, von Tucher S (2004) Influence of sulphur fertilisation on quantities and proportions of gluten protein types in wheat flour. J Cereal Sci 40:239–244CrossRefGoogle Scholar
  79. 79.
    Steer BT, Seiler GJ (1990) Changes in fatty acid composition of sunflower (Helianthus annuus) seeds in response to time of nitrogen application, supply rates and defoliation. J Sci Food Agric 51:11–26CrossRefGoogle Scholar
  80. 80.
    Zheljazkov VD, Vick BA, Baldwin BS, Buehring N, Astatkie T, Johnson B (2003) Oil content and saturated fatty acids in sunflower as a function of planting date, nitrogen rate, and hybrid. Agron J 101:1003–1011CrossRefGoogle Scholar
  81. 81.
    Calderini DF, Dreccer MF (2002) Choosing genotype, sowing date and plant density for malting quality. In: Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (eds) Barley science. Recent advances from molecular biology to agronomy of yield and quality. Food Product Press/The Haworth Press, New York, pp 413–444Google Scholar
  82. 82.
    Gooding MJ, Davies WP (1997) Wheat production and utilization. Systems, quality and the environment. CAB International, Wallingford, 355 pGoogle Scholar
  83. 83.
    Wrigley CW, Bekes F (2004) Processing quality requirements for wheat and other cereal grains. In: Benech-Arnold R, Sanchez RA (eds) Handbook of seed physiology: applications to agriculture. The Haworth Press, New York, pp 389–405Google Scholar
  84. 84.
    Miller JF, Zimmerman DC, Vick BA (1986) Genetic control of high oleic acid content in sunflower oil. Crop Sci 27:923–926CrossRefGoogle Scholar
  85. 85.
    Borrás L, Slafer GA, Otegui ME (2004) Seed dry weight response to source-sink manipulations in wheat, maize and soybean: a quantitative reappraisal. Field Crop Res 86:131–146CrossRefGoogle Scholar
  86. 86.
    Savin R, Prystupa P, Araus JL (2006) Hordein composition as affected by post-anthesis source-sink ratio under different nitrogen availabilities. J Cereal Sci 44:113–116CrossRefGoogle Scholar
  87. 87.
    Stone PJ, Savin R (1999) Grain quality and its physiological determinants. In: Satorre EH, Slafer GA (eds) Wheat: ecology and physiology of yield determination. Food Product Press/The Haworth Press, New York, pp 85–120Google Scholar
  88. 88.
    Cirilo AG, Actis M, Andrade FH, Valentinuz OR (2011) Crop management affects dry-milling quality of flint maize kernels. Field Crop Res 122:140–150CrossRefGoogle Scholar
  89. 89.
    Tamagno S, Greco IA, Almeida H, Di Paola JC, Martí Ribes F, Borrás L (2016) Crop management options for maximizing maize kernel hardness. Agron J 108:1561–1570CrossRefGoogle Scholar
  90. 90.
    Rondanini DP, Menendez YC, Gómez N, Miralles DJ, Botto JF (2017) Vegetative plasticity and floral branching compensate low plant density in modern spring rapeseed. Field Crop Res 210:104–113CrossRefGoogle Scholar
  91. 91.
    Peltonen-Sainio P, Jauhiainen L, Hyovela M, Nissila E (2011) Trade-off between oil and protein in rapeseed at high latitudes: means to consolidate protein crop status? Field Crop Res 121:248–255CrossRefGoogle Scholar
  92. 92.
    Andrianasolo F, Champolivier L, Maury P, Debaeke P (2016) Source and sink indicators for determining nitrogen, plant density and genotype effects on oil and protein contents in sunflower achenes. Field Crop Res 192:33–41CrossRefGoogle Scholar
  93. 93.
    López Pereira M, Sadras VO, Batista W, Casal JJ, Hall AJ (2017) Light-mediated self-organization of sunflower stands increases oil yield in the field. PNAS 114:7975–7980PubMedCrossRefGoogle Scholar
  94. 94.
    Gerde JA, Spinozzi JI, Borrás L (2017) Maize kernel hardness, endosperm zein profiles and ethanol production. Bioenergy Res 10:760–771CrossRefGoogle Scholar
  95. 95.
    Zuil SG, Izquierdo NG, Lujan J, Cantarero M, Aguirrezabal LAN (2012) Oil quality of maize and soybean genotypes with increased oleic acid percentage as affected by intercepted solar radiation and temperature. Field Crop Res 127:203–214CrossRefGoogle Scholar
  96. 96.
    Zahedi M, Mc Donald G, Jenner CF (2004) Nitrogen supply to the grain modifies the effects of temperature on starch and protein accumulation during grain filling in wheat. Aust J Agric Res 55:551–564CrossRefGoogle Scholar
  97. 97.
    Dupont FM, Hurkman WJ, Vensel WH, Tanaka C, Kothari KM, Chung OK, Altenbach SB (2006) Protein accumulation and composition in wheat grains: effects of mineral nutrients and high temperature. Eur J Agron 25:96–107CrossRefGoogle Scholar
  98. 98.
    Passarella VS, Savin R, Slafer GA (2008) Are temperature effects on weight and quality of barley grains modified by resource availability? Aust J Agric Res 59:510–516CrossRefGoogle Scholar
  99. 99.
    Aguirrezábal LAN, Martre P, Pereyra-Irujo G, Izquierdo N, Allard V (2009) Management and breeding strategies for the improvement of grain and oil quality. In: Sadras VO, Calderini DF (eds) Crop physiology: applications for genetic improvement and agronomy. Academic/Elsevier, New York, pp 387–410CrossRefGoogle Scholar
  100. 100.
    Martre P, Porter JR, Jamieson PD, Triboï E (2003) Modeling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen remobilization for wheat. Plant Physiol 133:1959–1967PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Pereyra-Irujo GA, Aguirrezábal LAN (2007) Sunflower yield and quality interactions and variability: analysis through a simple simulation model. Agric For Meteorol 143:252–265CrossRefGoogle Scholar
  102. 102.
    Angeloni P, Echarte M, Pereyra Irujo G, Izquierdo N, Aguirrezabal LAN (2017) Fatty acid composition of high oleic sunflower hybrids in a changing environment. Field Crop Res 202:146–157CrossRefGoogle Scholar

Books and Reviews

  1. Balyan HS, Gupta PK, Kumar S, Dhariwal R, Jaiswal V, Tyagi S, Agarwal P, Gahlaut V, Kumari S (2013) Genetic improvement of grain protein content and other health-related constituents of wheat grain. Plant Breed 132:446–457Google Scholar
  2. Baskin CC, Baskin JM (1998) Seeds: ecology, biogeography, and evolution of dormancy and germination. Academic/Elsevier, San Diego, 666 pGoogle Scholar
  3. Basra AS, Randhawa LS (2002) Quality improvement in field crops. Food Products Press/The Haworth Press, New York, 433 pGoogle Scholar
  4. Benech-Arnold RL, Sánchez RA (2004) Handbook of seed physiology: aplications to agriculture. Food Products Press/The Haworth Press, New York, 483 pGoogle Scholar
  5. Bewley JD, Black M (1985) Seeds: physiology of development and germination, 1st edn. Plenum, New York, 125 pCrossRefGoogle Scholar
  6. Gunstone FD, Harwood JL, Dijkstra AJ (2007) The lipid handbook with CD-ROM, 3rd edn. CRC Press, Boca Raton, 1472 pGoogle Scholar
  7. Martínez-Force E, Dunford NT, Salas JJ (2015) Sunflower oilseed. Chemistry, production, processing and utilization. AOCS monograph series on oilseeds, vol 7. AOCS Press, Urbana, 728 pGoogle Scholar
  8. Sadras VO, Calderini DF (2015) Crop physiology: applications for genetic improvement and agronomy. Academic/Elsevier, New York, 551 pGoogle Scholar
  9. Schneiter AA (1997) Sunflower technology and production. ASA, CSSA & SSSA, Madison, 834 pGoogle Scholar
  10. Shewry PR, Underwood C, Wan Y, Lovegrove A, Bhandari D, Toole GA, Clare Mills EN, Denyer K, Mitchell RAC (2009) Storage product synthesis and accumulation in developing grains of wheat. J Cereal Sci 50:106–112CrossRefGoogle Scholar
  11. Shewry PR, Mitchell RAC, Tosi P, Wan Y, Underwood C, Lovegrove A, Freeman J, Toole GA, Clare Mills EN, Ward JL (2012) An integrated study of grain development of wheat (cv. Hereward). J Cereal Sci 56:21–30CrossRefGoogle Scholar
  12. Simmonds DH (1989) Wheat and wheat quality in Australia. CSIRO, Melbourne, 299 pCrossRefGoogle Scholar
  13. Slafer GA, Molina-Cano JL, Savin R, Araus JL, Romagosa I (2002) Barley science: recent advances from molecular biology to agronomy of yield and quality. Food Products Press/The Haworth Press, New York, 551 pGoogle Scholar
  14. Triboi E, Triboi-Blondel AM (2002) Productivity and grain or seed composition: a new approach to an old problem. Eur J Agron 16:163–186CrossRefGoogle Scholar
  15. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets -iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Déborah P. Rondanini
    • 1
    • 2
    Email author
  • Lucas Borrás
    • 2
    • 3
  • Roxana Savin
    • 4
  1. 1.Department of Crop Production at the School of AgronomyUniversity of Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Producción VegetalUniversidad Nacional de RosarioZavallaArgentina
  3. 3.CONICET, National Council of Scientific and Technical ResearchBuenos AiresArgentina
  4. 4.Department of Crop and Forest SciencesUniversity of Lleida, Agrotecnio CenterLleidaSpain

Section editors and affiliations

  • Roxana Savin
    • 1
  • Gustavo Slafer
    • 2
  1. 1.Department of Crop and Forest Sciences and AGROTECNIO, (Center for Research in Agrotechnology)University of LleidaLleidaSpain
  2. 2.Department of Crop and Forest SciencesUniversity of LleidaLleidaSpain

Personalised recommendations