Advertisement

Recycling Technologies

  • Giuseppe BonifaziEmail author
  • Silvia Serranti
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)

Glossary

Ceramic glass

Transparent ceramic products characterized by an appearance similar to those of glass. They are characterized by an amorphous phase and one or more crystalline phases.

Classification

Set of mechanical actions carried out in dry or wet conditions, addressed to perform a “classification” of particles systems according to their morphometrical (e.g.,size-shape) attributes.

Comminution

Set of mechanical actions specifically carried out to perform a reduction of waste materials in particles of suitable size and shape to be properly handled and processed in order to liberate/remove contaminants.

Cullet

Particulate solid product resulting from collection-comminution of waste glasses.

De-inking

Mechanical process finalized to remove “ink-particles” and “stickies” from waste paper.

Ferrous metal

Magnetic metals mainly composed of iron.

Flotation

Mechanical process finalized to perform a selective separation of hydrophobic from hydrophilic materials. Hydrophobic materials...

Bibliography

Primary Literature

  1. 1.
    Bartl A, Hackl A, Mihalyi B, Wistuba M, Marini I (2005) Recycling of fibre materials. Process Saf Environ Prot 8(B4):351–358CrossRefGoogle Scholar
  2. 2.
    Confederation of European Paper Industries (2009) CEPI sustainability report. BrusselsGoogle Scholar
  3. 3.
    Ochoa JAG (2008) Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resour Conserv Recycl 52(7):965–972CrossRefGoogle Scholar
  4. 4.
    Wiegand PS, Unwin JP (1994) Alternative management of pulp and paper industry solid wastes. TAPPI J 77:91–97Google Scholar
  5. 5.
    Wolfer EP, Venkat WB, Maroju BV, Martiny A (1997) Method for recovering fiber from effluent streams. US Patent 5, pp 593–542Google Scholar
  6. 6.
    Saint Amand FJ (1999) Hydrodynamics of deinking flotation. Int J Miner Process 56:277–316CrossRefGoogle Scholar
  7. 7.
    Tandy S, Healey JR, Nason MA, Williamson JC, Jones DL (2009) Heavy metal fractionation during the co-composting of bio-solids, deinking paper fibre and green waste. Bioresour Technol 100(18):4220–4226CrossRefGoogle Scholar
  8. 8.
    Moo-Young HK Jr, Zimmie TF (1997) Waste minimization and re-use of paper sludges in landfill covers: a case study. Waste Manag Res 15(6):593–605CrossRefGoogle Scholar
  9. 9.
    Werther J, Ogada T (1999) Sewage sludge combustion. Prog Energy Combust Sci 25(1):55–116CrossRefGoogle Scholar
  10. 10.
    Safeglass (Europe) Limited, Nasmyth Building, Nasmyth Avenue. East Kilbride. UK G75 0Q. http://www.breakglass.org/Glass_making.html
  11. 11.
    Höland W, Beall G (2002) Glass-ceramic technology. The American Ceramic Society, Westerville, p 372Google Scholar
  12. 12.
    Pannhorst W (1997) Glass ceramics: state of the art. J Non-Cryst Solids 219:198–204CrossRefGoogle Scholar
  13. 13.
    Rem PC (1999) Eddy current separation. Delft University of Technology, DelftGoogle Scholar
  14. 14.
    Bonifazi G, D’Addetta A, Massacci P (2002) Classification by neural net of a particle stream in an eddy-current drum separator. Int J Part Part Syst Charact 19:96–102CrossRefGoogle Scholar
  15. 15.
    Jong TPR, de Dalmijn WL (2002) X-ray transmission imaging for process optimisation of solid resources. In: R02, 6th world congress on integrated resources management, Geneva, CD-Paper 173Google Scholar
  16. 16.
    Bonifazi G (2000) Imaging based sorting logic in solid waste recycling. In: The sixteenth international conference on solid waste technology and management – session 6A: recycling and source reduction, vol 6, Philadelphia, pp 14–26Google Scholar
  17. 17.
    Bonifazi G, Massacci P (2000) Cullets (glass fragments) quality control by artificial vision: a textural based approach. In: 4th world congress R00 – recovery, recycling, re-integration, Toronto, CD-Paper 31, pp 723–728Google Scholar
  18. 18.
    Bonifazi G, Massacci P (1998) Cullets (glass fragments) quality control by artificial vision: a color based approach. In: Proceedings of international conference on quality control by artificial vision, Takamatsu, pp 94–99Google Scholar
  19. 19.
    Serranti S, Bonifazi G, Pohl R (2006) Spectral cullet classification in the mid-infrared field for ceramic glass contaminants detection. Waste Manag Res 24:48–59CrossRefGoogle Scholar
  20. 20.
    Bonifazi G, Serranti S (2006) Imaging spectroscopy based strategies for ceramic glass contaminants removal in glass recycling. Waste Manag 26:627–639CrossRefGoogle Scholar
  21. 21.
    Cramb AW (1996) A short history of metals. Department of Materials Science and Engineering. Carnegie Mellon University. http://neon.mems.cmu.edu/cramb/Processing/history.html
  22. 22.
    Gascoigne B (2001) History of metallurgy. HistoryWorld. Ongoing. http://www.historyworld.net/wrldhis/PlainTextHistories.asp?historyid=ab16
  23. 23.
    Alter H (1977) Magnetic separation – recovery of salable iron and steel from municipal solid waste. Environmental Protection Agency, CincinnatiGoogle Scholar
  24. 24.
    Shapiro M, Galperin V (2005) Air classification of solid particles: a review. Chem Eng Process 44:279–285CrossRefGoogle Scholar
  25. 25.
    Wills BA (1997) Mineral processing technology, 6th edn. Butterworth-Heinmann, Boston, p 232Google Scholar
  26. 26.
    Kahn CH (1979) The art and thought of Heraclitus. Cambridge University Press, CambridgeGoogle Scholar
  27. 27.
    Mamedbeii GD (1959) Muhammed Nasir al-Din al-Tusi on the theory of parallel lines and the theory of ratios. (Azerbaijani), Izdat. Akad. Nauk Azerbaijzansk. SSR (Baku)Google Scholar
  28. 28.
    Dumas M (1955) Lavoisier, théoricien et expérimentateur. Presses Universitaires de France, ParisGoogle Scholar
  29. 29.
    Heijungs R, Huppes G, Guinée JB (2010) Life cycle assessment and sustainability analysis of products, materials and technologies. Toward a scientific framework for sustainability life cycle analysis. Polym Degrad Stab 95(3):422–428CrossRefGoogle Scholar
  30. 30.
    Bradley D (1965) The hydrocyclone. Pergamon, New YorkGoogle Scholar
  31. 31.
    Takoungsakdakun T, Pongstabodee S (2007) Separation of mixed post-consumer PET-POM-PVC plastic waste using selective flotation. Sep Purif Technol 54:248–252CrossRefGoogle Scholar
  32. 32.
    Buchan R, Yarar B (1995) Recovering plastics for recycling by mineral processing techniques. J Miner Met Mater Soc 47:52–55CrossRefGoogle Scholar
  33. 33.
    Drelich J, Kim JH, Payne T, Miller JD, Kobler RW (1999) Purification of polyethylene terephthalate from polyvinyl chloride by froth flotation for the plastics (soft-drink bottle) recycling industry. Sep Purif Technol 15:9–17CrossRefGoogle Scholar
  34. 34.
    Kang H, Schoenung JM (2005) Electronic waste recycling: a review of US infrastructure and technology options. Resour Conserv Recycl 45(4):368–400CrossRefGoogle Scholar
  35. 35.
    Veit HM, Pereira C, Bernardes AM (2002) Using mechanical processing in recycling printed wiring board. J Miner Met Mater Soc 54(6):45–47CrossRefGoogle Scholar
  36. 36.
    Bakker EJ, Rem PC (2006) Magneto-hydrostatic separation of PET. In: Proceedings of the 5th international conference for conveying and handling of particulate solids, Sorrento, 27–31 Aug 2006Google Scholar
  37. 37.
    Berkhout SPM, Rem PC (2009) Dutch Patent NL2001431Google Scholar
  38. 38.
    Rem PC, Di Maio F, Hu B, Houzeaux G, Baltes L, Tieran M (2012) Magnetic fluid equipment for sorting of secondary polyolefins from waste. In: Ecoimpuls 2012: international conference of environmental research and technology, Timisoara, 25–26 OctGoogle Scholar
  39. 39.
    Luciani V, Bonifazi G, Rem P, Serranti S (2015) Upgrading of PVC rich wastes by magnetic density separation and hyperspectral imaging quality control. Waste Manag 45:118–125CrossRefGoogle Scholar
  40. 40.
    Askvik KM, Hetlesæther S, Sjobölm J, Stenius S (2001) Properties of the lignosulfonate-surfactant complex phase. Colloids Surf A Physicochem Eng Asp 182:178–189CrossRefGoogle Scholar
  41. 41.
    Singh BP (1998) Wetting mechanism in the flotation separation of plastics. Filtr Sep 35:525–527CrossRefGoogle Scholar
  42. 42.
    Shen H, Pugh RJ, Forssberg E (2002) Floatability, selectivity and flotation separation of plastics by using a surfactant. Colloids Surf A Physicochem Eng Asp 196:63–70CrossRefGoogle Scholar
  43. 43.
    Andrady AL (2003) Plastics and the environment. Wiley, Hoboken, p 792CrossRefGoogle Scholar
  44. 44.
    Al-Salem SM, Lettieri P, Baeyens J (2009) Thermal pyrolysis of high density polyethylene (HDPE). In: Proceedings of the 9th European gasification conference: clean energy and chemicals, DüsseldorfGoogle Scholar
  45. 45.
    Scheirs J (1998) Polymer recycling: science, technology and application, 1st edn. Wiley-Blackwell, New YorkGoogle Scholar
  46. 46.
    Dirks E (1996) Energy recovery from plastic waste in waste incineration plants. In: Brandrup J, Bittner M, Menges G, Michaeli W (eds) Recycling and recovery of plastics, 1st edn. Hanser, Munich, pp 746–769Google Scholar
  47. 47.
    Zia KM, Bhatti HN, Bhatti IA (2007) Methods for polyurethane and polyurethane composites, recycling and recovery: a review. React Funct Polym 67(8):675–692CrossRefGoogle Scholar
  48. 48.
    Hawn K (2001) An overview of commercial recycling technologies and textile applications for the products. In: 6th annual conference on recycling of polymer, textile and carpet waste, DaltonGoogle Scholar
  49. 49.
    Cupit MJ (1996) Opportunities and barriers to textile recycling, AEA Technology, Report 0113, OxfordshireGoogle Scholar
  50. 50.
    Bartl A, Mihalyi B, Marini I (2004) Applications of renewable fibrous materials. Chem Biochem Eng 18:21–28CrossRefGoogle Scholar
  51. 51.
    Wang Y (1995) Reuse of carpet industrial waste for concrete reinforcement. In: RILEM proceeding (Disposal and recycling of organic and polymeric construction materials), vol 27, London, pp 297–306Google Scholar
  52. 52.
    Wang Y (1997) Properties of concrete reinforced with recycled carpet waste fibers. In: Proceedings of international symposium on brittle matrix composites 5, Warsaw, pp 179–186Google Scholar
  53. 53.
    Wang Y (1999a) Ecotextile’98: sustainable development. In: Proceedings of the conference, Bolton, pp 165–171Google Scholar
  54. 54.
    Wang Y (1999) Utilization of recycled carpet waste fibers for reinforcement of concrete and soil. Polym-Plast Technol Eng 38:533–546CrossRefGoogle Scholar
  55. 55.
    Wang Y (2002) Recycling of automotive fibers. In: Proceedings of joint INDA-TAPPI conference, Atlanta, pp 160–167Google Scholar
  56. 56.
    Bohnhoff A, Petershans J (2002) De-centralised technology for the sorting of textile floor coverings. In: 7th annual conference on recycling of polymer, textile and carpet waste, DaltonGoogle Scholar
  57. 57.
    Strzelecki C (2004) Modern solutions for shredding, grinding and re-pelletizing post-industrial fiber, nonwovens and carpet scrap. In: Annual conference on recycling of polymer, textile and carpet waste, DaltonGoogle Scholar
  58. 58.
    Bacon FC, Holland WR, Holland LH (1998) Method and machine for recycling discarded carpets. US Patent 5,704,104Google Scholar
  59. 59.
    Howe MA, White SH, Locklear SG (2001) Method and apparatus for reclaiming carpet components. US Patent 6,182,913Google Scholar
  60. 60.
    Herlihy J (1997) Recycling in the carpet industry. Carpet and Rug Industry, pp 17–25Google Scholar
  61. 61.
    Kasserra P (1998) Recycling of polyamide 6.6 and 6. In: Prasad PN et al (eds) Science and technology of polymers and advanced materials. Plenum, New York, pp 629–635CrossRefGoogle Scholar
  62. 62.
    Hagguist JAE, Hume RM (1993) Carpet reclaimer. US Patent 5,230,473Google Scholar
  63. 63.
    Schut JH (1995) Big plans for carpet. Plast World 53:25Google Scholar
  64. 64.
    Booij M, Hendrix JAJ, Frentzen YH (1997) Process for recycling polyamide-containing carpet waste. European Patent 759,456Google Scholar
  65. 65.
    Frentzen YH, Thijert MP, Zwart RL (1997) Process for the recovery of caprolactam from waste containing nylon by extraction with alkyl phenol. World Patent 970,304Google Scholar
  66. 66.
    Sarian AK, Handerman AA, Jones S, Davis EA, Adbye A (1998) Recovery of polyamide from composite articles. US Patent 584,980Google Scholar
  67. 67.
    Sikorski ME (1993) Recycling of polymeric materials from carpets and other multi-component structures by means of supercritical fluid extraction. US Patent 5,233,021Google Scholar
  68. 68.
    Griffith AT, Park Y, Roberts CB (1999) Separation and recovery of nylon form carpet waste using a supercritical fluid antisolvent technique. Polym-Plast Technol Eng 38(3):411–432CrossRefGoogle Scholar
  69. 69.
    Honeywell Nylon Inc (2005) http://www.infinitynylon.com
  70. 70.
    Elam CC, Evan RJ, Czernik S (1997) An integrated approach to the recovery of fuels and chemicals from mixed waste carpets through thermocatalytic processing, Preprint papers -American Chemical Society. Div Fuel Chem 42(4):993–997Google Scholar
  71. 71.
    Bajaj P, Sharma ND (1997) In: Gupta VB, Kothari VK (eds) Reuse of polymer and fibre waste in manufactured fibre technology. Chapman & Hall, New York, p 615Google Scholar
  72. 72.
    Brown T (2001) Infinity nylon – a never-ending cycle of renewal. In: 6th annual conference on recycling of polymer, textile and carpet waste, Dalton. http://hdl.handle.net/1853/10385
  73. 73.
    Schut JH (1993) A recycling first: carpets! Plast Techno, pp 22–25Google Scholar
  74. 74.
    Young D, Chlystek S, Malloy R, Rios I (1998) Recycling of carpet scrap. US Patent 5,852,115Google Scholar
  75. 75.
    Hagberg CG, Dickerson JL (1997) Recycling nylon carpet via reactive extrusion. Plast Eng 53:41–43Google Scholar
  76. 76.
    Datta RJ, Polk MB, Kumar S (1995) Reactive compatibilization of polypropylene and nylon. Polym-Plast Technol Eng 34(4):551–560CrossRefGoogle Scholar
  77. 77.
    Dagli SS, Xanthos M, Biesenberger JA (1992) Blends of nylon 6 and polypropylene with potential applications in recycling, effects of reactive extrusion variables on blend characteristics. ACS Symp Ser 513:241–257CrossRefGoogle Scholar
  78. 78.
    David DJ, Dickerson JL, Sincock TF (1994) Thermoplastic composition and method for producing thermoplastic composition by melt blending carpet. US Patent 5,294,384Google Scholar
  79. 79.
    Muzzy J, Wang Y, Hagberg C, Patel P, Jin K, Samanta S, Bryson L, Shaw B (2004) Long fiber reinforced post-consumer carpet. In: ANTEC 2004, Annual technical conference of the Society of Plastics Engineers, ChicagoGoogle Scholar
  80. 80.
    Jähne B (1993) Digital image processing: concepts, algorithms, and scientific applications, 2nd edn. Springer, BerlinzbMATHCrossRefGoogle Scholar
  81. 81.
    de Kattentidt HUR, Jong TPR, Dalmijn WL (2003) Multi-sensor identification and sorting of bulk solids. Control Eng Pract 11:4147CrossRefGoogle Scholar
  82. 82.
    Bearmann GH, Levenson RM, Cabib D (eds) (2002) Spectral imaging: basic principles and prospective applications. Kluwer, DordrechtGoogle Scholar
  83. 83.
    Leitner R, Mairer H, Kercek A (2003) Real-time classification of polymers with NIR spectral imaging and blob analysis. Real-Time Imag 9:245–251CrossRefGoogle Scholar
  84. 84.
    American Wood Preservers’ Association (AWPA) (1999) American wood preservers’ association book of standards. American Wood Preservers’ Association, GrandburyGoogle Scholar
  85. 85.
    Blassino M, Solo-Gabriele HM, Townsend T (2002) Pilot scale evaluation of sorting technologies for CCA treated wood waste. Waste Manag Res 20:290–301CrossRefGoogle Scholar
  86. 86.
    Kormienko M (1999) Sorting technologies for CCA-treated wood waste. Master of Science thesis, University of Miami, Coral GablesGoogle Scholar
  87. 87.
    Solo-Gabriele H, Townsend T, Kormienko M, Stook K, Gary K, Tolaymat T (2000) Alternative chemicals and improved disposal-end management practices for CCA-treated wood. Final Technical Report #00-03. Florida Center for Solid and Hazardous Waste Management, GainesvilleGoogle Scholar
  88. 88.
    Hahn DW, Flower WL, Hencken KR (1997) Discrete particle detection and metal emissions monitoring using laser-induced breakdown spectroscopy. Appl Spectrosc 51:1836–1844CrossRefGoogle Scholar
  89. 89.
    Hahn DW (1998) Laser-induced breakdown spectroscopy for sizing and elemental analysis of discrete aerosol particles. Appl Phys Lett 72:2960–2962CrossRefGoogle Scholar
  90. 90.
    Radziemski LJ, Cremers DA (1989) Laser-induced plasmas and applications. Marcel Dekker, New YorkGoogle Scholar
  91. 91.
    de Jong TPR, Dalmijn WL (2002) X-ray transmission imaging for process optimisation of solid resources. In: Proceedings of R’02 congress, Geneva, pp 1–6Google Scholar
  92. 92.
    de Mesina MB, Jong TPR, Dalmijn WL (2007) Automatic sorting of scrap metals with a combined electromagnetic and dual energy X-ray transmission sensor. Int J Miner Process 82:222–232CrossRefGoogle Scholar
  93. 93.
    Hege E, O’Connell D, Johnson W, Basty S, Dereniak E (2003) Hyperspectral imaging for astronomy and space surveillance. Proc SPIE 5159:380–391CrossRefGoogle Scholar
  94. 94.
    Wood KS, Gulian AM, Fritz GG, Van Vechten D (2002) A QVD detector for focal plane hyperspectral imaging in astronomy. Bull Am Astron Soc 34:1241Google Scholar
  95. 95.
    Monteiro S, Minekawa Y, Kosugi Y, Akazawa T, Oda K (2007) Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS J Photogram Remote Sens 62(1):2–12CrossRefGoogle Scholar
  96. 96.
    Smail V, Fritz A, Wetzel D (2006) Chemical imaging of intact seeds with NIR focal plane array assists plant breeding. Vib Spectrosc 42(2):215–221CrossRefGoogle Scholar
  97. 97.
    Lyon RC, Lester DS, Lewis EN, Lee E, Yu LX, Jefferson EH (2002) Near-infrared spectral imaging for quality assurance of pharmaceutical products: analysis of tablets to assess powder blend homogeneity. AAPS Pharm Sci Tech 3(3):17CrossRefGoogle Scholar
  98. 98.
    Rodionova O, Houmøller L, Pomerantsev A, Geladi P, Burger J, Dorofeyev V (2005) NIR spectrometry for counterfeit drug detection: a feasibility study. Anal Chim Acta 549(1–2):151–158CrossRefGoogle Scholar
  99. 99.
    Roggo Y, Edmond A, Chalus P, Ulmschneider M (2005) Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms. Anal Chim Acta 535(1–2):79–87CrossRefGoogle Scholar
  100. 100.
    Ferris D, Lawhead R, Dickman E, Holtzapple N, Miller J, Grogan S (2001) Multimodal hyperspectral imaging for the non invasive diagnosis of cervical neoplasia. J Low Genit Tract Dis 5(2):65–72CrossRefGoogle Scholar
  101. 101.
    Kellicut D, Weiswasser J, Arora S, Freeman J, Lew R, Shuman C (2004) Emerging technology: hyperspectral imaging. Perspect Vasc Surg Endovasc Ther 16(1):53–57CrossRefGoogle Scholar
  102. 102.
    Zheng G, Chen Y, Intes X, Chance B, Glickson JD (2004) Contrast-enhanced near-infrared (NIR) optical imaging for subsurface cancer detection. J Porphyrins Phthalocyanines 8(9):1106–1117CrossRefGoogle Scholar
  103. 103.
    Serranti S, Gargiulo A, Bonifazi G (2011) Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Manag 31:2217–2227CrossRefGoogle Scholar
  104. 104.
    Serranti S, Gargiulo A, Bonifazi G (2012) Classification of polyolefins from building and construction waste using NIR hyperspectral imaging system. Resour Conserv Recycl 61:52–58CrossRefGoogle Scholar
  105. 105.
    Serranti S, Gargiulo A, Bonifazi G (2012) Hyperspectral imaging for process and quality control in recycling plants of polyolefin flakes. J Near Infrared Spectrosc 20:573–581CrossRefGoogle Scholar
  106. 106.
    Ulrici A, Serranti S, Ferrari C, Cesare D, Foca G, Bonifazi G (2013) Efficient chemometric strategies for PET-PLA discrimination in recycling plants using hyperspectral imaging. Chemom Intell Lab Syst 122:31–39CrossRefGoogle Scholar
  107. 107.
    Palmieri R, Bonifazi G, Serranti S (2014) Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging. Waste Manag 34:2120–2130CrossRefGoogle Scholar
  108. 108.
    Serranti S, Luciani V, Bonifazi G, Hu B, Rem P (2015) An innovative recycling process to obtain pure polyethylene and polypropylene from household waste. Waste Manag 35:12–20CrossRefGoogle Scholar
  109. 109.
    Bonifazi G, Palmieri R, Serranti S (2017) Concrete drill core characterization finalized to optimal dismantling and aggregates recovery. Waste Manag 60:301–310CrossRefGoogle Scholar
  110. 110.
    W2Plastics (2008) Collaborative Project 212782 – FP7-ENV-2007-1: magnetic sorting and ultrasound sensor technologies for production of high purity secondary polyolefins from wasteGoogle Scholar
  111. 111.
    HYSPIMGLASS (2002) CRAFT Programme: CRAF-1999-71817: development of a Novel and high speed spectral imaging system to detect glass-like contaminants in the recyclable, cost-effectively increasing glass recycling and avoiding landfillingGoogle Scholar
  112. 112.
    SSOM (2008) Spectral scanner operative manual (Version 2.0). DV Optics S.r.l., Italy. http://www.dvoptic.com/index.html
  113. 113.
    Geladi P, Isaksson H, Lindqvist L, Wold S, Esbensen K (1989) Principal components analysis of multivariate images. Chemom Intell Lab Syst 5(3):209–220CrossRefGoogle Scholar

Books and Reviews

  1. Al-Salem SM, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643CrossRefGoogle Scholar
  2. Beede DN, Bloom DE (1995) Economics of the generation and management of MSW. NBER working papers 5116. National Bureau of Economic Research, Cambridge, MAGoogle Scholar
  3. Caputo AC, Pelagagge PM (2001) Waste-to-energy plant for paper industry sludges disposal: technical-economic study. J Hazard Mater 81(3):265–283CrossRefGoogle Scholar
  4. Cofie O, Kone D, Rothenberger S, Moser D, Zubruegg C (2009) Co-composting of faecal sludge and organic solid waste for agriculture: process dynamics. Water Res 43(18):4665–4675CrossRefGoogle Scholar
  5. El Haggar S (2007) Sustainable industrial design and waste management: cradle-to-cradle for sustainable development. Academic, St. Louis, p 424Google Scholar
  6. Galperin V, Shapiro M (1999) Separation of solid particles in a fluidized bed air classifier. Powder Handl Process 11:2Google Scholar
  7. Gaustad G, Olivetti E, Kirchain R (2012) Improving aluminum recycling: a survey of sorting and impurity removal technologies. Resour Conserv Recycl 58:79–87CrossRefGoogle Scholar
  8. Gesing A, Steward C, Wolanski R, Dalton R, Berry R (2000) Scrap preparation for aluminium alloy sorting. In: Proceedings TMS fall extraction and process metallurgy meeting, PittsburghGoogle Scholar
  9. Gesing A, Berry L, Dalton R, Wolanski R (2002) Assuring continued recyclability of automotive aluminium alloys: grouping of wrought alloys by color, X-ray absorption and chemical composition-based sorting. In: Proceedings annual meeting on automotive alloys and aluminium sheet and plate rolling and finishing technology, SeattleGoogle Scholar
  10. Gundupalli SP, Hait S, Thakur A (2017) A review on automated sorting of source-separated municipal solid waste for recycling. Waste Manag 60:56–74CrossRefGoogle Scholar
  11. Huth-Fehre T, van den Broek W (1995) NIR-Remote sensing and artificial neural networks for rapid identification of post consumer plastics. J Mol Struct 348:143–146CrossRefGoogle Scholar
  12. Johansson JE (2007) Plastics – the compelling facts and figures. In: 6th IdentiPlast Biennial conference on the recycling and recovery of plastics, BrusselsGoogle Scholar
  13. Kunii D, Levenspiel O (1991) Fluidization engineering, 2nd edn. Boston: Butterworth-Heinmann, p 233CrossRefGoogle Scholar
  14. Marques GA, Tenorio JAS (2000) Use of froth flotation to separate PVC/PET mixtures. Waste Manag 20:265–269CrossRefGoogle Scholar
  15. Méndez A, Fidalgo JM, Guerrero F, Gascó G (2009) Characterization and pyrolysis behaviour of different paper mill waste materials. J Anal Appl Pyrolysis 86(1):66–73CrossRefGoogle Scholar
  16. Oshitani J, Kiyoshima K, Tanaka Z (2003) Continuous dry material separation from automobile shredder residue. Kagaku Kogaku Ronbunshu 29:8–14CrossRefGoogle Scholar
  17. Pascoe RD (2005) The use of selective depressants for the separation of ABS and HIPS by froth flotation. Miner Eng 18:233–237CrossRefGoogle Scholar
  18. Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58CrossRefGoogle Scholar
  19. Sekito T, Matsuto T, Tanaka N (2006a) Application of a gas-solid fluidized bed separator for shredded municipal bulky solid waste separation. Waste Manag 26:1422–1429CrossRefGoogle Scholar
  20. Sekito T, Tanaka N, Matsuto T (2006b) Batch separation of shredded bulky waste by gas-solid fluidized bed at laboratory scale. Waste Manag 26:1246–1252CrossRefGoogle Scholar
  21. Singh N, Hu D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B 115:409–422CrossRefGoogle Scholar
  22. Svoboda J (2004) Magnetic techniques for the treatment of materials. Kluwer, New York, p 656. http://www.springer.com/earth+sciences+and+geography/book/978-1-4020-2038-4
  23. Van Nieuwenhuijzen A, Van der Graaf J (2010) Handbook on particle separation processes. IWA, London, p 400Google Scholar
  24. Worrell E, Reuter M (2014) Handbook of recycling state-of-the-art for practitioners, analysts, and scientists. eBook ISBN: 9780123965066 Hardcover ISBN: 9780123964595, Elsevier, 1st edn, 600 ppCrossRefGoogle Scholar
  25. World Bank (2007) Environmental, health, and safety guidelines for pulp and paper mills. Draft technical document. Environment and Social Development Department, International Finance Corporation, Washington, DCGoogle Scholar
  26. Yoshida M, Oshitani J, Kaname K, Gotoh K (2006) Fluidized bed medium separation (FBMS) of Cl-containing plastics in home electric appliance shredder residue. Kagaku Kogaku Ronbunshu 32:115–121CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Chimica Materiali Ambiente SapienzaSapienza - Università di Roma Via EudossianaRomeItaly

Section editors and affiliations

  • A. C. (Thanos) Bourtsalas
    • 1
  • Nickolas J. Themelis
    • 2
  1. 1.Earth Engineering Center, Columbia UniversityNew YorkUSA
  2. 2.Earth and Environmental EngineeringColumbia UniversityNew YorkUSA

Personalised recommendations