Geothermal Energy, Nature, Use, and Expectations

  • Maciej Lukawski
  • Jefferson W. Tester
  • Betina Bendall
  • Barry Goldstein
  • Gerardo Hiriart
  • Luis Gutierrez-Negrin
  • Ruggero Bertani
  • Christopher Bromley
  • Ernst Huenges
  • Arni Ragnarsson
  • Mike Mongillo
  • John W. Lund
  • Ladislaus Rybach
  • Vladimir Zui
  • Hirofumi Muraoka
Reference work entry
Part of the Encyclopedia of Sustainability Science and Technology Series book series (ESSTS)

Glossary

Base-load demand

Continuous demand for electricity. Power generation plants with high capacity factors combine as a practical source of continuous base-load electricity supplies

Capacity factor

The energy generated in a span of time divided by the maximum energy that could have been generated at full (name plate) power of the plant during that period of time, most often expressed as a percentage of 1 year of plant operation. The maximum amount of power a plant can generate is its name plate capacity

Conduction-dominated systems

Earth systems of heat transfer in which heat flow is principally via the contact of rocks (and pore- and fracture-filling fluids and gasses in rocks) with a capacity to transfer thermal energy from higher to lower temperature conditions. Nonvolcanic (amagmatic) geothermal systems tend to become conduction-dominated systems

Convection-dominated systems

Earth systems of heat transfer in which heat flow is principally via flow of fluids and molten rock...

Notes

Acknowledgments

The authors thank their international colleagues who have contributed so much of their professional lives and time to provide improved understanding of geothermal systems. We are especially grateful to Graeme Beardsmore, David Blackwell, Lucien Bronicki, Trevor Demayo, Ronald DiPippo, Roland Horne, Arthur Lee, David Newell, Subir Sanyal, Ken Williamson, and Doone Wyborn.

Bibliography

Primary Literature

  1. 1.
    Cataldi R (1999) The year zero of geotherrnics. In: Stories from a heated earth. Geothermal Resources Council, Sacramento, pp 7–17Google Scholar
  2. 2.
    Burgassi P (1999) Historical outline of geothermal technology in the Larderello region to the middle of the 20th century. In: Stories from a heated earth, Geothermal Resources Council, Sacramento, CA, pp 195–219Google Scholar
  3. 3.
    Tester J, Anderson B, Batchelor A et al (2006) The future of geothermal energy. Impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology, Cambridge, MAGoogle Scholar
  4. 4.
    Hiriart G, Prol-Ledesma RM, Alcocer S, Espíndola S (2010) Submarine geothermics; Hydrothermal vents and electricity generation. In: Proceedings of world geothermal congress 2010, BaliGoogle Scholar
  5. 5.
    Thorsteinsson H, Augustine C, Anderson BJ et al (2008) The impacts of drilling and reservoir technology advances on EGS. In: Thirty-third work. Geothermal reservoir engineering, Stanford University, Stanford, CAGoogle Scholar
  6. 6.
    Dobson P, Asanuma H, Huenges E et al (2017) Supercritical geothermal systems – a review of past studies and ongoing research activities. In: Proceedings of fourty-first work. Geothermal reservoir engineering, Stanford University, Stanford University, Stanford, CAGoogle Scholar
  7. 7.
    Lukawski MZ, Silverman RL, Tester JW (2016) Uncertainty analysis of geothermal well drilling and completion costs. Geothermics 64:382–391.  https://doi.org/10.1016/j.geothermics.2016.06.017CrossRefGoogle Scholar
  8. 8.
    Lukawski MZ, Anderson BJ, Augustine C et al (2014) Cost analysis of oil, gas, and geothermal well drilling. J Pet Sci Eng 118:1–14.  https://doi.org/10.1016/j.petrol.2014.03.012CrossRefGoogle Scholar
  9. 9.
    International Finance Corporation (2013) Success of geothermal wells: a global study, International Finance Corporation, Washington, DCGoogle Scholar
  10. 10.
    DiPippo R (2015) Geothermal power plants: principles, applications, case studies and environmental impact, 4th edn. Butterworth-Heinemann, Waltham, MAGoogle Scholar
  11. 11.
    Lukawski MZ, Tester JW, DiPippo R (2017) Impact of molecular structure of working fluids on performance of organic Rankine cycles (ORCs). Sustain Energy Fuel.  https://doi.org/10.1039/C6SE00064ACrossRefGoogle Scholar
  12. 12.
    U.S. Energy Information Administration (EIA) (2015) Electric power annual, U.S. Department of Energy, Washington, DC; available at: https://www.eia.gov/electricity/annual/
  13. 13.
    DiPippo R (2004) Second Law assessment of binary plants generating power from low-temperature geothermal fluids. Geothermics 33:565–586CrossRefGoogle Scholar
  14. 14.
    Bloomquist RG (2003) Geothermal space heating. Geothermics 32:513–526.  https://doi.org/10.1016/j.geothermics.2003.06.001CrossRefGoogle Scholar
  15. 15.
    Lund J, Boyd T (2015) Direct utilization of geothermal energy 2015 worldwide review. In: Proceedings of the world geothermal congress, Melbourne, AustraliaGoogle Scholar
  16. 16.
    Lund J, Sanner B, Rybach L et al (2003) Ground-source heat pumps – a world overview. Renew Energy World 6:218–227Google Scholar
  17. 17.
    Self SJ, Reddy BV, Rosen MA (2013) Geothermal heat pump systems: status review and comparison with other heating options. Appl Energy 101:341–348.  https://doi.org/10.1016/j.apenergy.2012.01.048CrossRefGoogle Scholar
  18. 18.
    Brown M, Burke-Scoll M, Stebnicki J (2011) Air source heat pump efficiency gains from low ambient temperature operation using supplemental electric heating, Minnesota Division of Energy Resources, Minnesota Department of CommerceGoogle Scholar
  19. 19.
    Furuno S, Okushima L, Sase S (2016) Comparison of coefficient of performance (COP) between an underground water source heat pump system and an air source heat pump system for greenhouse heating in cold and snowy areas in Japan. J Agric Meteorol 72:173–177.  https://doi.org/10.2480/agrmet.D-15-00029CrossRefGoogle Scholar
  20. 20.
    Bertani R, Thain I (2002) Geothermal power generating plant CO2 emission survey. IGA News 49:1–3Google Scholar
  21. 21.
    Bloomfield K, Moore J, Neilson R (2003) Geothermal energy reduces greenhouse gases. Geotherm Resour Counc Bull 32:77–79Google Scholar
  22. 22.
    Fridleifsson IB, Bertani R, Huenges E et al (2008) The possible role and contribution of geothermal energy to the mitigation of climate change. In: IPCC scoping meeting on renewable energy sources, Luebeck, pp 59–80Google Scholar
  23. 23.
    Frick S, Kaltschmitt M, Schröder G (2010) Life cycle assessment of geothermal binary power plants using enhanced low-temperature reservoirs. Energy 35:2281–2294.  https://doi.org/10.1016/j.energy.2010.02.016CrossRefGoogle Scholar
  24. 24.
    Nill M (2004) Die zukünftige Entwicklung von Stromerzeugungstechniken, Eine ökologische Analyse vor dem Hintergrund technischer und ökonomischer Zusammenhänge, Fortschritt-Berichte, vol 518. VDI, Düsseldorf, p 346Google Scholar
  25. 25.
    Kaltschmitt M (2000) Environmental effects of heat provision from geothermal energy in comparison to other sources of energy. In: Proceedings of the world geothermal congress 2000, Kyushu/Tohoku, pp 627–632Google Scholar
  26. 26.
    Kagel A, Bates D, Gawell K (2007) A guide to geothermal energy and the environment. Geothermal Energy Association, Washington, DCGoogle Scholar
  27. 27.
    Albertsson A, Jónsson J (2010) The Svartsengi resource park. In: Proceedings of the world geothermal congress 2010, Bali, IndonesiaGoogle Scholar
  28. 28.
    Bertani R (2015) Geothermal power generation in the world 2010–2014 update report. In: Proceedings of the world geothermal congress 2015.  https://doi.org/10.1016/j.geothermics.2011.10.001
  29. 29.
    AGEG-AGEA (2010) Australian code for reporting of exploration results, geothermal resources and geothermal reserves, Australian Geothermal Energy Group (AGEG), Adelaide SA; Available at: http://geothermal.statedevelopment.sa.gov.au/ageg/geothermal_reporting_code
  30. 30.
    Goldstein B, Hiriart G, Tester J, et al (2011) Great expectations for geothermal energy – forecast to 2100. In: Proceedings, Thirty-sixth work. Geothermal reservoir engineering, Stanford University, Stanford, pp 281–289Google Scholar
  31. 31.
    Hamza VM, Cardoso RR, Ponte Neto CF (2008) Spherical harmonic analysis of earth’s conductive heat flow. Int J Earth Sci 97:205–226.  https://doi.org/10.1007/s00531-007-0254-3CrossRefGoogle Scholar
  32. 32.
    Lund JW, Freeston DH, Boyd TL (2005) Direct application of geothermal energy: 2005 worldwide review. Geothermics 34:691–727.  https://doi.org/10.1016/j.geothermics.2005.09.003CrossRefGoogle Scholar
  33. 33.
    Gawell K, Greenberg G (2007) 2007 interim report. Update on world geothermal development.  https://doi.org/10.1017/CBO9781107415324.004
  34. 34.
    World Energy Council (2013) World energy resources: 2013 survey, World Energy Council, London, EnglandGoogle Scholar
  35. 35.
    Dickson MH, Fanelli M (2003) Geothermal energy: utilization and technology. United Nations Educational, Scientific and Cultural Organization, Paris, FranceGoogle Scholar
  36. 36.
    Stefansson V (2005) World geothermal assessment. In: Proceedings of the world geothermal congress 2005, Antalya, TurkeyGoogle Scholar
  37. 37.
    International Energy Agency (IEA) (2016) World energy outlook 2016.  https://doi.org/10.1787/weo-2016-en
  38. 38.
    Tester J, Drake E, Golay M et al (2005) Sustainable energy – choosing among options. MIT Press, Cambridge, MAGoogle Scholar
  39. 39.
    Fox D, Sutter D, Beckers K et al (2013) Sustainable heat farming: modeling extraction and recovery in discretely fractured geothermal reservoirs. Geothermics 46:42–54.  https://doi.org/10.1016/j.geothermics.2012.09.001. Accepted 24 Sept 2012CrossRefGoogle Scholar
  40. 40.
    O’Sullivan M, Mannington W (2005) Renewability of the Wairakei-Tauhara geothermal resource. In: Proceedings of the world geothermal congress, Antalya, TurkeyGoogle Scholar
  41. 41.
    IPPC (2007) Working group III: mitigation of climate change, chapter 4. Geothermal, section 4.3.3.4. In: Climate change 2007 physical science basis.  https://doi.org/10.1080/03736245.2010.480842
  42. 42.
    Krewitt W, Teske S, Simon S et al (2009) Energy [R]evolution 2008 – a sustainable world energy perspective. Energy Policy 37:5764–5775.  https://doi.org/10.1016/j.enpol.2009.08.042CrossRefGoogle Scholar
  43. 43.
    Bromley C, Mongillo M, Goldstein B et al (2010) IPCC renewable energy report: the potential contribution of geothermal energy to climate change mitigation. In: Proceedings of the world geothermal congress 2010, Bali, IndonesiaGoogle Scholar

Websites, Books, and Reviews

  1. Beardsmore GR, Cull JP (2001) Crustal heat flow: a guide to measurement and modelling. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  2. European Energy Research Alliance Joint Programme on Geothermal Energy (EERA JPGE). https://www.eera-set.eu/eera-joint-programmes-jps/geothermal/
  3. European Geothermal Energy Council (EGEC). http://www.egec.org/
  4. Geothermal Resource Association (GEA). http://www.geo-energy.org/
  5. Geothermal Resource Council (GRC) and its annual conference in particular. http://www.geothermal.org/
  6. Huenges E (2010) Geothermal energy systems: exploration, development, and utilization. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. International Energy Agency’s Geothermal Implementing Agreement (IEA GIA). http://www.iea-gia.org/
  8. International Geothermal Association (IGA) and its World Geothermal Congress (WGC). http://www.geothermal-energy.org/
  9. International Panel for Climate Change (IPCC). Special report on renewable energy sources and climate change mitigation (SRREN) (and in particular Chapter 4 – Geothermal). http://www.ipcc.ch/report/srren/
  10. National Geothermal Data System (NGDS). http://geothermaldata.org/

Copyright information

© Crown 2018

Authors and Affiliations

  • Maciej Lukawski
    • 1
  • Jefferson W. Tester
    • 1
  • Betina Bendall
    • 2
  • Barry Goldstein
    • 2
  • Gerardo Hiriart
    • 3
  • Luis Gutierrez-Negrin
    • 4
  • Ruggero Bertani
    • 5
  • Christopher Bromley
    • 6
  • Ernst Huenges
    • 7
  • Arni Ragnarsson
    • 8
  • Mike Mongillo
    • 6
  • John W. Lund
    • 9
  • Ladislaus Rybach
    • 10
  • Vladimir Zui
    • 11
  • Hirofumi Muraoka
    • 12
  1. 1.Cornell Energy InstituteCornell UniversityIthacaUSA
  2. 2.Energy Resources DivisionSouth Australian State GovernmentAdelaideAustralia
  3. 3.Energias Alternas, Estudios y ProyectosCuemavacaMexico
  4. 4.Mexican Geothermal AssociationMorelia CityMexico
  5. 5.Enel Green Power North AmericaPisaItaly
  6. 6.GNS Science, Wairakei Research CentreTaupoNew Zealand
  7. 7.GFZ-PotsdamPotsdamGermany
  8. 8.Iceland GeoSurveyReykjavikIceland
  9. 9.Emeritus Director, Geo-Heat CenterOregon Institute of TechnologyKlamath FallsUSA
  10. 10.Geowatt AGZürichSwitzerland
  11. 11.Research-Production Centre for GeologyMinskBelarus
  12. 12.Hirosaki UniversityHirosakiJapan

Personalised recommendations