MRI and MRCP for Diagnosis and Staging of Pancreatic Cancer

Reference work entry

Abstract

Magnetic resonance imaging (MRI) has conventionally taken a secondary role to CT in the staging of pancreatic adenocarcinoma. It has been used for the evaluation of the pancreas in equivocal CT findings, in patients who are unable to have iodinated contrast media or to avoid using ionizing radiation.

However, MRI is particularly useful for the assessment of small pancreatic lesions, differentiating benign from malignant pancreatic lesions, and the assessment of cystic pancreatic masses, and has an invaluable role in the preoperative assessment prior to enucleation surgery. This chapter will cover the MRI sequences used for the diagnosis and staging of pancreatic neoplasms, the advantages and disadvantages of MRI, and will describe the mimics of pancreatic cancer, and other pancreatic neoplasms.

Keywords

MRI pancreatic carcinoma Diffusion weighted imaging pancreatic carcinoma MRI staging pancreatic carcinoma MRI mimics pancreatic carcinoma MRI technique for imaging pancreatic carcinoma 

Notes

Acknowledgements

Mr Mark Jones,

Superintendent MRI Radiographer

Royal Liverpool and Broadgreen University Hospital Trust

Mark.jones@rlbuht.nhs.uk

Dr R. Albazaz,

Consultant Radiologist

Leeds Teaching Hospital NHS trust

r.albazaz@nhs.net

References

  1. 1.
    Callery MP, Chang KJ, Fishman EK, et al. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Am Surg Oncol. 2009;16:1727–33.CrossRefGoogle Scholar
  2. 2.
    Schima W, Ba-Ssalamah A, Goetzinger P, et al. State-of-the-art magnetic resonance imaging of pancreatic cancer. Top Magn Reson Imaging. 2007;18:421–9.CrossRefGoogle Scholar
  3. 3.
    Ichikawa T, Haradome H, Hachiya J, et al. Pancreatic ductal adenocarcinoma: preoperative assessment with helical CT versus dynamic MRI imaging. Radiology. 1997;202:655–62.CrossRefGoogle Scholar
  4. 4.
    Kauhanen SP, Komar G, Seppanen MP, et al. Aprospective diagnostic accuracy study of 18F-flurodeoxyglucose positron emission tomography/computed tomography, multidetector row computed tomography, and magnetic resonance imaging in primary diagnosis and staging of pancreatic cancer. Ann Surg. 2009;250:957–63.CrossRefGoogle Scholar
  5. 5.
    Koelblinger C, Ba-Ssalamah A, Goetzinger P, Puchner S, Weber M, Sahora K, et al. Gadobenate dimeglumine-enhanced 3.0-T MR imaging versus multiphasic 64-detector row CT: prospective evaluation in patients suspected of having pancreatic cancer. Radiology. 2011;259:757–66.CrossRefGoogle Scholar
  6. 6.
    Ly JN, Miller FH. MR imaging of the pancreas: a practical approach. Radiol Clin N Am. 2002;40:1289–306.CrossRefGoogle Scholar
  7. 7.
    Semelka RC, Kroeker MA, Shoenut JP, et al. Pancreatic disease: prospective comparison of CT, ERCP, and 1.5-T MR imaging with dynamic gadolinium enhancement and fat suppression. Radiology. 1991;181:785–91.CrossRefGoogle Scholar
  8. 8.
    De Robertis R, Martini PT, Demozzi E, et al. Diffusion-weighted imaging of pancreatic cancer. World J Radiol. 2015;7(10):319–28.CrossRefGoogle Scholar
  9. 9.
    Westbrook C, Kaut Roth C, Talbot J. MRI in practice. Oxford: Wiley; 2011.Google Scholar
  10. 10.
    McRobbie DW, Moore EA, Graves MJ. MRI from picture to proton. Cambridge: Cambridge University Press; 2017.CrossRefGoogle Scholar
  11. 11.
    Koh DM, Collins DJ. Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol. 2007;188:1622–35.CrossRefGoogle Scholar
  12. 12.
    Schima W. MRI of the pancreas: tumours and tumour stimulating processes. Cancer Imaging. 2006;6:199–203.CrossRefGoogle Scholar
  13. 13.
    Lee ES, Lee JM. Imaging diagnosis of pancreatic cancer: a state of the art review. Word J Gastroenterol. 2014;20(24):7864–77.CrossRefGoogle Scholar
  14. 14.
    Tirkes T, Sandrasegaran K, Sanyal R, et al. Secrtin-enhanced MR cholangiopancreatography: spectrum of findings. Radiographics. 2013;33:1889–906.CrossRefGoogle Scholar
  15. 15.
    Li A, Wong CS, Wong MK, et al. Acute adverse reactions to magnetic resonance contrast media: gadolinium chelates. Br J Radiol. 2006;79(941):368–71.CrossRefGoogle Scholar
  16. 16.
    Hunt CH, Hartman RP, Hesley GK, et al. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR. 2009;193(4):1124–7.CrossRefGoogle Scholar
  17. 17.
    Bleicher AG, Kanal E. Assessment of adverse reaction rates to a newly approved MRI contrast agent: review of 23,553 administrations of gadobenate dimeglumine. AJR. 2008;191(1):307–11.CrossRefGoogle Scholar
  18. 18.
    Spinazzi A. Identification and management of acute reactions to gadolinium-based contrast agents. MRI bioeffects, safety, and patient management. 4th ed. Los Angeles: Biomedical Research Publishing Group; 2014. p. 242–55.Google Scholar
  19. 19.
    Jung JW, Kang HR, Kim MH, et al. Immediate hypersensitivity reaction to gadolinium-based MR contrast media. Radiology. 2012;264(2):414–22.CrossRefGoogle Scholar
  20. 20.
    ACR. Manual on contrast media, version 10.2. 2016; https://www.acr.org/Quality-Safety/Resources/Contrast-Manual. Accessed 15 Feb 2017.
  21. 21.
    Jingu A, Fukuda J, Taketomi-Takahashi T, et al. Breakthrough reactions of iodinated and gadolinium contrast media after oral steroid premedication protocol. BMC Med Imaging. 2014;14:34.CrossRefGoogle Scholar
  22. 22.
    Jung JW, Choi YH, Park CM, et al. Outcomes of corticosteroid prophylaxsis for hypersensitivity reactions to low osmolar contrast media in high risk patients. Ann Allergy Asthma Immunol. 2016;117:304–9.CrossRefGoogle Scholar
  23. 23.
    Grobner T. Gadolinium-a specific trigger for the development of nephrogenic systemic fibrosis dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21:1104–8.CrossRefGoogle Scholar
  24. 24.
    Cowper SE, Rabach M, Girardi M. Clinical and histological findings in nephrogenic systemic fibrosis. Eur J Radiol. 2008;66:191–9.CrossRefGoogle Scholar
  25. 25.
    Morcos SK. Extracellular gadolinium contrast agents: differences in stability. Eur J Radiol. 2008;66:175–9.CrossRefGoogle Scholar
  26. 26.
    Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. JMRI. 2007;26(5):1190–7.CrossRefGoogle Scholar
  27. 27.
    Todd DJ, Kagan A, Chibnik LB, et al. Cutaenous changes of nephrogenic systemic fibrosis: predictor of early mortality and association with gadolinium exposure. Arthritis Rheum. 2007;56:3433–41.CrossRefGoogle Scholar
  28. 28.
    Panesar M, Banerjee S, Barone GW. Cinical improvement of nephrogenic systemic fibrosis after kidney transplantation. Clin Transpl. 2008;22:803–8.CrossRefGoogle Scholar
  29. 29.
    Sadowski EA, Bennett LK, Chan MR, et al. Nephrogenic systemic fibrosis: risk factors and incidence estimation. Radiology. 2007;243:148–57.CrossRefGoogle Scholar
  30. 30.
    Broome DR, Girguis MS, Baron PW, Cottrell AC, Kjellin I, Kirk GA. Gadodiamide-associated nephrogenic systemic fibrosis: why radiologists should be concerned. AJR Am J Roentgenol. 2007;188:586–92.CrossRefGoogle Scholar
  31. 31.
    Prince MR, Zhang HL, Roditi GH, et al. Risk factors for NSF: a literature review. J Magn Reson Imaging. 2009;30:1298–308.CrossRefGoogle Scholar
  32. 32.
    Fraum TJ, Ludwig MD, Bashir MR, Fowler KJ. Gadolinium-base contrast agents: a comprehensive risk assessment. J Magn Reson Imaging. 2017:1–16. doi:10.1002/jmri.25625.CrossRefPubMedGoogle Scholar
  33. 33.
    Kim JH, Park SH, Yu ES, et al. Visually isoattenuating pancreatic adenocarcinoma at dynamic-enhanced CT: frequency, clinical and pathologic characteristics, and diagnosis at imaging examinations. Radiology. 2010;257:87–96.CrossRefGoogle Scholar
  34. 34.
    Schima W, Fugger R, Schober E, et al. Diagnosis and staging of pancreatic cancer: comparison of mangafodipir-enhanced MRI and contrast-enhanced helical hydro-CT. AJR. 2002;179:717–24.CrossRefGoogle Scholar
  35. 35.
    Rieber A, Tomczak R, Nüssle K, Klaus H, Brambs HJ. MRI with mangafodipir trisodium in the detection of pancreatic tumours: comparison with helical CT. Br J Radiol. 2000;73:1165–9.CrossRefGoogle Scholar
  36. 36.
    Miller FH, Rini NJ, Keppe AL. MRI of adenocarcinoma of the pancreas. AJR. 2008;187:365–74.CrossRefGoogle Scholar
  37. 37.
    Matsuki M, Inada Y, Nakai G, Tatsugami F, Tanikake M, Narabayashi I, et al. Diffusion-weighed MR imaging of pancreatic carcinoma. Abdom Imaging. 2007;32:481–3.CrossRefGoogle Scholar
  38. 38.
    Chikawa T, Erturk SM, Motosugi U, Sou H, Iino H, Araki T, et al. High-b value diffusion-weighted MRI for detecting pancreatic adenocarcinoma: preliminary results. AJR Am J Roentgenol. 2007;188:409–14.CrossRefGoogle Scholar
  39. 39.
    Hao JG, Wang JP, Gu YL, Lu ML. Importance of b value in diffusion weighted imaging for the diagnosis of pancreatic cancer. World J Gastroenterol. 2013;19:6651–5.CrossRefGoogle Scholar
  40. 40.
    Wang Y, Chen ZE, Nikolaidis P, McCarthy RJ, Merrick L, Sternick LA, et al. Diffusion-weighted magnetic resonance imaging of pancreatic adenocarcinomas: association with histopathology and tumor grade. J Magn Reson Imaging. 2011;33:136–42.CrossRefGoogle Scholar
  41. 41.
    Brenner R, Metens T, Bali M, Demetter P, Matos C. Pancreatic neuroendocrine tumor: added value of fusion of T2-weighted imaging and high b-value diffusion-weighted imaging for tumor detection. Eur J Radiol. 2012;81:e746–9.CrossRefGoogle Scholar
  42. 42.
    Fukukura Y, Takumi K, Kamimura K, Shindo T, Kumagae Y, Tateyama A, et al. Pancreatic adenocarcinoma: variability of diffusion-weighted MR imaging findings. Radiology. 2012;263:732–40.CrossRefGoogle Scholar
  43. 43.
    Yao XZ, Yun H, Zeng MS, et al. Evaluation of ADC measurements among solid pancreatic masses by respiratory-triggered diffusion-weighted MR imaging with inversion-recovery fat-suppression technique at 3.0T. Magn Reson Imaging. 2013;31:524–8.CrossRefGoogle Scholar
  44. 44.
    Lee JK, Kim AY, Kim PN, Lee MG, Ha HK. Prediction of vascular involvement and resectability by multidetector-row CT versus MR imaging with MR angiography in patients who underwent surgery for resection of pancreatic ductal adenocarcinoma. Eur J Radiol. 2010;73:310–6.CrossRefGoogle Scholar
  45. 45.
    Valls C, Andía E, Sanchez A, Fabregat J, Pozuelo O, Quintero JC, et al. Dual-phase helical CT of pancreatic adenocarcinoma: assessment of resectability before surgery. AJR Am J Roentgenol. 2002;178:821–6.CrossRefGoogle Scholar
  46. 46.
    Kim YK, Park G, Kim CS, Yu HC, Han YM. Diagnostic ef cacy of gadoxetic acid-enhanced MRI for the detection of liver metastases: comparison with multidetector-row CT. Br J Radiol. 2012;85:539–47.CrossRefGoogle Scholar
  47. 47.
    Holzapfel K, Reiser-Erkan C, Fingerle AA, et al. Comparison of diffusion- weighted MR imaging and multidetector-row CT in the detection of liver metastases in patients operated for pancreatic cancer. Abdom Imaging. 2011;36:179–84.CrossRefGoogle Scholar
  48. 48.
    Niekel MC, Bipat S, Stoker J. Diagnostic imaging of colorectal liver metastases with CT, MR imaging, FDG PET, and/or FDG PET/CT: a meta-analysis of prospective studies including patients who have not previously undergone treatment. Radiology. 2010;257:674–84.CrossRefGoogle Scholar
  49. 49.
    Danet IM, Semelka RC, Nagase LL, Woosely JT, Leonardou P, Armao D. Liver metastases from pancreatic adenocarcinoma: MR imaging characteristics. J Magn Reson Imaging. 2003;18:181–8.CrossRefGoogle Scholar
  50. 50.
    Donahue TR, Isacoff WH, Hines OJ, et al. Downstaging chemotherapy and alteration in the classic computed tomography/magnetic resonance imaging signs of vascular involvement in patients with pancreatobiliary malignant tumours: influence on patient selection for surgery. Arch Surg. 2011;146:836–43.CrossRefGoogle Scholar
  51. 51.
    Low G, Panu A, Millo N, Leen E. Multimodality imaging of neoplastic and non-neoplastic solid lesions of the pancreas. Radiographics. 2011;31:933–1015.CrossRefGoogle Scholar
  52. 52.
    Choi SY, Kim SH, Kang TW, et al. Differentiating mass forming autoimmune pancreatitis from pancreatic ductal adenocarcinoma on the basis of contrast enhanced MRI and DWI findings. AJR. 2016;206:291–300.CrossRefGoogle Scholar
  53. 53.
    Nakatani K, Watanabe Y, Okumura A, et al. MR imaging features of solid-pseudopapillary tumour of the pancreas. Magn Reson Med Sci. 2007;6(2):121–6.CrossRefGoogle Scholar
  54. 54.
    Gijon de la Santa L, Retortillo JAP, Camarero A, et al. Radiology of pancreatic neoplasms: an update. World J Gatrointest Oncol. 2014;6(9):330–43.CrossRefGoogle Scholar
  55. 55.
    Wang Y, Miller FH, Chen ZE, et al. Diffusion weighted MR imaging of solid and cystic lesions of the pancreas. Radiographics. 2011;31(3):E47–65.CrossRefGoogle Scholar
  56. 56.
    Procacci C, Carbognin G, Accordini S, et al. Non-functioning endocrine tumours of the pancreas: possibilities of spiral CT characterisation. Eur Radiol. 2001;11:1175–83.CrossRefGoogle Scholar
  57. 57.
    McAuley G, Delaney H, Colville J, et al. Multimodality preoperative imaging of pancreatic insulinomas. Clin Radiol. 2005;60(10):1039–50.CrossRefGoogle Scholar
  58. 58.
    Merkle EM, Bender GN, Brambs HJ. Imaging findings in pancreatic lymphoma: differential aspects. AJR. 2000;174(3):671–5.CrossRefGoogle Scholar
  59. 59.
    Klein KA, Stephens DH, Welch TJ. CT characteristics of metastatic disease of the pancreas. Radiographics. 1998;18:369–78.CrossRefGoogle Scholar
  60. 60.
    Procacci C, Megibow AJ, Carbognin G, Guarise A, Spoto E, Biasiutti C, et al. Intraductal papillary mucinous tumor of the pancreas: a pictorial essay. Radiographics. 1999;19:1447–63.CrossRefGoogle Scholar
  61. 61.
    Postlewait LM, Ethun CG, McInnis MR, et al. Association of pre-operative risk factors with malignancy in pancreatic mucinous cystic neoplasms: a multicentre study. JAMA Surg. 2017;152(1):19–25.CrossRefGoogle Scholar
  62. 62.
    Ohtsuka T, Kono H, Nagayoshi Y, et al. An increase in the number of predictive factors augments the likelihood of malignancy in branch duct intraductal papillary mucinous neoplasm of the pancreas. Surgery. 2012;151:76–83.CrossRefGoogle Scholar
  63. 63.
    Levy P, Jounnaud V, O’Toole D, et al. Natural history of intraductal papillary mucinous tumours of the pancreas: actuarial risk of malignancy. Clin Gastroenterol Hepatol. 2006;4(4):460–8.CrossRefGoogle Scholar
  64. 64.
    Tanaka M, Castillo C, Assay V, et al. International consensus guidelines 2012 for the management of IPMN and MCN of the pancreas. Pancreatology. 2012;12:183–97.CrossRefGoogle Scholar
  65. 65.
    Tanaka M, Chari V, Adsay C, et al. International consensus guidelines for management of intraductal papillary mucinous neoplasms and mucinous cystic neoplasms of the pancreas. Pancreatology. 2006;6(1–2):17–32.CrossRefGoogle Scholar
  66. 66.
    Taouli B, Vilgrain V, Vullierme MP, et al. Intraductal papillary mucinous tumors of the pancreas: helical CT with histopathologic correlation. Radiology. 2000;217:757–64.CrossRefGoogle Scholar
  67. 67.
    Berland LL, Silverman SG, Gore RM, et al. Managing incidental findings on abdominal CT: white paper of the ACR incidental findings committee. J Am Coll Radiol. 2010;7:754–77.CrossRefGoogle Scholar
  68. 68.
    Marchegiani G, Fernández-del CC. Is it safe to follow side branch IPMNs? Adv Surg. 2014;48:13–25.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Royal Liverpool and Broadgreen University Hospital TrustLiverpoolUK

Section editors and affiliations

  • James L. Abbruzzese
    • 1
  • Raul Urrutia
    • 2
  • John P. Neoptolemos
    • 3
    • 4
    • 5
  • M. W. Büchler
    • 6
  • Th. Hackert
    • 7
  1. 1.Duke University Medical CenterDurhamUSA
  2. 2.GI Research Unit, Mayo ClinicRochesterUSA
  3. 3.Department of SurgeryThe Royal Liverpool and Broadgreen University Hospitals NHS TrustLiverpoolUK
  4. 4.Department of Molecular and Clinical Cancer Medicine, Institute of Translational MedicineUniversity of LiverpoolLiverpoolUK
  5. 5.NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
  6. 6.Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany
  7. 7.Department of General, Visceral and Transplantation SurgeryHeidelberg University HospitalHeidelbergGermany

Personalised recommendations