Pancreatic Cancer pp 1273-1304 | Cite as

Development of Novel Therapeutic Response Biomarkers

Reference work entry

Abstract

Biomarkers that can indicate the best treatment option for each patient could greatly improve pancreatic cancer survival. Markers need to be practical to use in a timely fashion in order to change the choice of therapy. In vitro or ex vivo studies are useful in identifying potential markers, but these may not have relevance to marker profiles of in situ tumors, and adequate quality of tumor tissue may not be routinely available in patients with advanced disease, and so blood-based markers of systemic determinants of response may be more attractive. Any marker, tissue- or blood-borne, needs to be tested in clinical studies involving multiple populations before entering routine use. These studies cannot rely just on prognosis as one individual’s survival may be improved by therapy but still be significantly shorter than another whose survival was independent of therapy. Ideally an objective measure of response that links to survival benefit should be used to evaluate a biomarker. However, this may not be possible for adjuvant therapy where the tumor is removed before treatment begins and the link between survival and response in an advanced setting is not always reliable. Survival on its own is a poor surrogate for response, and its use may lead to confusion of prognostic and response markers unless used within large clinical trials. Adverse responses to treatment such as rash linked to survival may be an alternative measure. Difficulties in defining the level of beneficial response make empirical identification of response biomarkers difficult. Theory-based studies have more power to identify and validate markers, but the determinants of drug response are complex, and popular (but potentially misguided) beliefs about specific proteins may lead to multiple testing and hence type 1 errors. Grouping biomolecules (proteins, RNA, metabolites, or DNA sequences) into marker panels linked to function, for example, grouping proteins that determine mesenchymal transition of cancer cells or which define the nature of stroma, may offer a way forward. Alternatively, functional analysis alone, including level of immune response, may allow the most beneficial therapy to be directed to each patient.

Keywords

Gemcitabine 5-FU Capecitabine Tegafur DPD Thymidylate synthase Ribonucleotide reductase hENT1 CDA Response Survival 

References

  1. 1.
    Neoptolemos JP, Stocken DD, Tudur Smith C, Bassi C, Ghaneh P, Owen E, et al. Adjuvant 5-fluorouracil and folinic acid vs observation for pancreatic cancer: composite data from the ESPAC-1 and -3(v1) trials. Br J Cancer. 2009;100:246–50.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Uesaka K, Boku N, Fukutomi A, Okamura Y, Konishi M, Matsumoto I, et al. Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet. 2016;388:248–57.CrossRefPubMedGoogle Scholar
  3. 3.
    Greenhalf W, Ghaneh P, Neoptolemos JP, Palmer DH, Cox TF, Lamb RF, et al. Pancreatic cancer hENT1 expression and survival from gemcitabine in patients from the ESPAC-3 trial. J Natl Cancer Inst. 2014;106:djt347.PubMedCrossRefGoogle Scholar
  4. 4.
    Middleton G, Ghaneh P, Costello E, Greenhalf W, Neoptolemos JP. New treatment options for advanced pancreatic cancer. Expert Rev Gastroenterol Hepatol. 2008;2:673–96.PubMedCrossRefGoogle Scholar
  5. 5.
    Ang M, Rajcic B, Foreman D, Moretti K, O’Callaghan ME. Men presenting with prostate-specific antigen (PSA) values of over 100 ng/mL. BJU Int. 2016;117(Suppl 4):68–75.PubMedCrossRefGoogle Scholar
  6. 6.
    Biserni GB, Engstrom MJ, Bofin AM. HER2 gene copy number and breast cancer-specific survival. Histopathology. 2016;69:871–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Stocker A, Hilbers ML, Gauthier C, Grogg J, Kullak-Ublick GA, Seifert B, et al. HER2/CEP17 ratios and clinical outcome in HER2-positive early breast cancer undergoing trastuzumab-containing therapy. PLoS One. 2016;11:e0159176.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Costantino CL, Witkiewicz AK, Kuwano Y, Cozzitorto JA, Kennedy EP, Dasgupta A, et al. The role of HuR in gemcitabine efficacy in pancreatic cancer: HuR Up-regulates the expression of the gemcitabine metabolizing enzyme deoxycytidine kinase. Cancer Res. 2009;69:4567–72.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lowes S, Ackermann BL. AAPS and US FDA crystal city VI workshop on bioanalytical method validation for biomarkers. Bioanalysis. 2016;8:163–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Chiou VL, Burotto M. Pseudoprogression and immune-related response in solid tumors. J Clin Oncol. 2015;33:3541–3.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ishii H, Furuse J, Nakachi K, Suzuki E, Yoshino M. Primary tumor of pancreatic cancer as a measurable target lesion in chemotherapy trials. Jpn J Clin Oncol. 2005;35:601–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Jain RK, Lee JJ, Ng C, Hong D, Gong J, Naing A, et al. Change in tumor size by RECIST correlates linearly with overall survival in phase I oncology studies. J Clin Oncol. 2012;30:2684–90.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hess V, Glimelius B, Grawe P, Dietrich D, Bodoky G, Ruhstaller T, et al. CA 19-9 tumour-marker response to chemotherapy in patients with advanced pancreatic cancer enrolled in a randomised controlled trial. Lancet Oncol. 2008;9:132–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Chuong MD, Frakes JM, Figura N, Hoffe SE, Shridhar R, Mellon EA, et al. Histopathologic tumor response after induction chemotherapy and stereotactic body radiation therapy for borderline resectable pancreatic cancer. J Gastrointest Oncol. 2016;7:221–7.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Tzeng CW, Balachandran A, Ahmad M, Lee JE, Krishnan S, Wang H, et al. Serum carbohydrate antigen 19-9 represents a marker of response to neoadjuvant therapy in patients with borderline resectable pancreatic cancer. HPB (Oxford). 2014;16:430–8.CrossRefGoogle Scholar
  16. 16.
    Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Boj SF, Hwang CI, Baker LA, Chio II, Engle DD, Corbo V, et al. Organoid models of human and mouse ductal pancreatic cancer. Cell. 2015;160:324–38.CrossRefPubMedGoogle Scholar
  18. 18.
    Suzuki R, Takagi T, Hikichi T, Konno N, Sugimoto M, Watanabe KO, et al. Derived neutrophil/lymphocyte ratio predicts gemcitabine therapy outcome in unresectable pancreatic cancer. Oncol Lett. 2016;11:3441–5.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Schirmer MA, Lüske CM, Roppel S, Schaudinn A, Zimmer C, Pflüger R, et al. Relevance of Sp binding site polymorphism in WWOX for treatment outcome in pancreatic cancer. J Natl Cancer Inst. 2016;108:djv387.PubMedCentralCrossRefGoogle Scholar
  20. 20.
    Donahue TR, Tran LM, Hill R, Li Y, Kovochich A, Calvopina JH, et al. Integrative survival-based molecular profiling of human pancreatic cancer. Clin Cancer Res. 2012;18:1352–63.PubMedCrossRefGoogle Scholar
  21. 21.
    Kadera BE, Toste PA, Wu N, Li L, Nguyen AH, Dawson DW, et al. Low expression of the E3 ubiquitin ligase CBL confers chemoresistance in human pancreatic cancer and is targeted by epidermal growth factor receptor inhibition. Clin Cancer Res. 2015;21:157–65.PubMedCrossRefGoogle Scholar
  22. 22.
    Xu P, Yao J, He J, Zhao L, Wang X, Li Z, et al. CIP2A down regulation enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncotarget. 2016;7:14831–40.Google Scholar
  23. 23.
    Pant S, Martin LK, Geyer S, Wei L, Van Loon K, Sommovilla N, et al. Baseline serum albumin is a predictive biomarker for patients with advanced pancreatic cancer treated with bevacizumab: a pooled analysis of 7 prospective trials of gemcitabine-based therapy with or without bevacizumab. Cancer. 2014;120:1780–6.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17:500–3.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Battini S, Faitot F, Imperiale A, Cicek AE, Heimburger C, Averous G, et al. Metabolomics approaches in pancreatic adenocarcinoma: tumor metabolism profiling predicts clinical outcome of patients. BMC Med. 2017;15:56.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Ko AH, Bekaii-Saab T, Van Ziffle J, Mirzoeva OM, Joseph NM, Talasaz A, et al. A multicenter, open-label phase II clinical trial of combined MEK plus EGFR inhibition for chemotherapy-refractory advanced pancreatic adenocarcinoma. Clin Cancer Res. 2016;22:61–8.PubMedCrossRefGoogle Scholar
  27. 27.
    Assenat E, Azria D, Mollevi C, Guimbaud R, Tubiana-Mathieu N, Smith D, et al. Dual targeting of HER1/EGFR and HER2 with cetuximab and trastuzumab in patients with metastatic pancreatic cancer after gemcitabine failure: results of the “THERAPY” phase 1-2 trial. Oncotarget. 2015;6:12796–808.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Heinemann V, Vehling-Kaiser U, Waldschmidt D, Kettner E, Marten A, Winkelmann C, et al. Gemcitabine plus erlotinib followed by capecitabine versus capecitabine plus erlotinib followed by gemcitabine in advanced pancreatic cancer: final results of a randomised phase 3 trial of the “Arbeitsgemeinschaft Internistische Onkologie” (AIO-PK0104). Gut. 2013;62:751–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Crane CH, Varadhachary GR, Yordy JS, Staerkel GA, Javle MM, Safran H, et al. Phase II trial of cetuximab, gemcitabine, and oxaliplatin followed by chemoradiation with cetuximab for locally advanced (T4) pancreatic adenocarcinoma: correlation of Smad4(Dpc4) immunostaining with pattern of disease progression. J Clin Oncol. 2011;29:3037–43.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kulke MH, Blaszkowsky LS, Ryan DP, Clark JW, Meyerhardt JA, Zhu AX, et al. Capecitabine plus erlotinib in gemcitabine-refractory advanced pancreatic cancer. J Clin Oncol. 2007;25:4787–92.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Stathis A, Moore MJ. Advanced pancreatic carcinoma: current treatment and future challenges. Nat Rev Clin Oncol. 2010;7:163–72.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ueno H, Kaniwa N, Okusaka T, Ikeda M, Morizane C, Kondo S, et al. Homozygous CDA*3 is a major cause of life-threatening toxicities in gemcitabine-treated Japanese cancer patients. Br J Cancer. 2009;100:870–3.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Weekes CD, Nallapareddy S, Rudek MA, Norris-Kirby A, Laheru D, Jimeno A, et al. Thymidylate synthase (TYMS) enhancer region genotype-directed phase II trial of oral capecitabine for 2nd line treatment of advanced pancreatic cancer. Invest New Drugs. 2011;29:1057–65.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yoneyama H, Takizawa-Hashimoto A, Takeuchi O, Watanabe Y, Atsuda K, Asanuma F, et al. Acquired resistance to gemcitabine and cross-resistance in human pancreatic cancer clones. Anticancer Drugs. 2015;26:90–100.PubMedCrossRefGoogle Scholar
  35. 35.
    Kim Y, Han D, Min H, Jin J, Yi EC, Kim Y. Comparative proteomic profiling of pancreatic ductal adenocarcinoma cell lines. Mol Cells. 2014;37:888–98.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Singh A, Settleman J. Oncogenic K-ras “addiction” and synthetic lethality. Cell Cycle. 2009;8:2676–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Ali S, Almhanna K, Chen W, Philip PA, Sarkar FH. Differentially expressed miRNAs in the plasma may provide a molecular signature for aggressive pancreatic cancer. Am J Transl Res. 2010;3:28–47.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Hwang JH, Voortman J, Giovannetti E, Steinberg SM, Leon LG, Kim YT, et al. Identification of microRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One. 2010;5:e10630.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Fan P, Liu L, Yin Y, Zhao Z, Zhang Y, Amponsah PS, et al. MicroRNA-101-3p reverses gemcitabine resistance by inhibition of ribonucleotide reductase M1 in pancreatic cancer. Cancer Lett. 2016;373:130–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Yoo PS, Sullivan CA, Kiang S, Gao W, Uchio EM, Chung GG, et al. Tissue microarray analysis of 560 patients with colorectal adenocarcinoma: high expression of HuR predicts poor survival. Ann Surg Oncol. 2009;16:200–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Heinonen M, Bono P, Narko K, Chang SH, Lundin J, Joensuu H, et al. Cytoplasmic HuR expression is a prognostic factor in invasive ductal breast carcinoma. Cancer Res. 2005;65:2157–61.PubMedCrossRefGoogle Scholar
  42. 42.
    McAllister F, Pineda DM, Jimbo M, Lal S, Burkhart RA, Moughan J, et al. dCK expression correlates with 5-fluorouracil efficacy and HuR cytoplasmic expression in pancreatic cancer: a dual-institutional follow-up with the RTOG 9704 trial. Cancer Biol Ther. 2014;15:688–98.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lal S, Burkhart RA, Beeharry N, Bhattacharjee V, Londin ER, Cozzitorto JA, et al. HuR posttranscriptionally regulates WEE1: implications for the DNA damage response in pancreatic cancer cells. Cancer Res. 2014;74:1128–40.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Maring JG, Groen HJ, Wachters FM, Uges DR, de Vries EG. Genetic factors influencing pyrimidine-antagonist chemotherapy. Pharmacogenomics J. 2005;5:226–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Shoji H, Morizane C, Sakamoto Y, Kondo S, Ueno H, Takahashi H, et al. Phase I clinical trial of oral administration of S-1 in combination with intravenous gemcitabine and cisplatin in patients with advanced biliary tract cancer. Jpn J Clin Oncol. 2016;46:132–7.PubMedGoogle Scholar
  46. 46.
    Fischel JL, Formento P, Ciccolini J, Etienne-Grimaldi MC, Milano G. Lack of contribution of dihydrofluorouracil and alpha-fluoro-beta-alanine to the cytotoxicity of 5′-deoxy-5-fluorouridine on human keratinocytes. Anticancer Drugs. 2004;15:969–74.PubMedCrossRefGoogle Scholar
  47. 47.
    Oleinik NV, Krupenko NI, Reuland SN, Krupenko SA. Leucovorin-induced resistance against FDH growth suppressor effects occurs through DHFR up-regulation. Biochem Pharmacol. 2006;72:256–66.PubMedCrossRefGoogle Scholar
  48. 48.
    Muhale FA, Wetmore BA, Thomas RS, McLeod HL. Systems pharmacology assessment of the 5-fluorouracil pathway. Pharmacogenomics. 2011;12:341–50.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Iizuka N, Hirose K, Noma T, Hazama S, Tangoku A, Hayashi H, et al. The nm23-H1 gene as a predictor of sensitivity to chemotherapeutic agents in oesophageal squamous cell carcinoma. Br J Cancer. 1999;81:469–75.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Morita T, Matsuzaki A, Kurokawa S, Tokue A. Forced expression of cytidine deaminase confers sensitivity to capecitabine. Oncology. 2003;65:267–74.PubMedCrossRefGoogle Scholar
  51. 51.
    Cui Y, Brosnan JA, Blackford AL, Sur S, Hruban RH, Kinzler KW, et al. Genetically defined subsets of human pancreatic cancer show unique in vitro chemosensitivity. Clin Cancer Res. 2012;18:6519–30.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ueno H, Kiyosawa K, Kaniwa N. Pharmacogenomics of gemcitabine: can genetic studies lead to tailor-made therapy? Br J Cancer. 2007;97:145–51.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Tibaldi C, Giovannetti E, Vasile E, Mey V, Laan AC, Nannizzi S, et al. Correlation of CDA, ERCC1, and XPD polymorphisms with response and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res. 2008;14:1797–803.PubMedCrossRefGoogle Scholar
  54. 54.
    Sugiyama E, Kaniwa N, Kim SR, Kikura-Hanajiri R, Hasegawa R, Maekawa K, et al. Pharmacokinetics of gemcitabine in Japanese cancer patients: the impact of a cytidine deaminase polymorphism. J Clin Oncol. 2007;25:32–42.PubMedCrossRefGoogle Scholar
  55. 55.
    Hyo Kim L, Sub Cheong H, Koh Y, Ahn KS, Lee C, Kim HL, et al. Cytidine deaminase polymorphisms and worse treatment response in normal karyotype AML. J Hum Genet. 2015;60:749–54.PubMedCrossRefGoogle Scholar
  56. 56.
    Baker JA, Wickremsinhe ER, Li CH, Oluyedun OA, Dantzig AH, Hall SD, et al. Pharmacogenomics of gemcitabine metabolism: functional analysis of genetic variants in cytidine deaminase and deoxycytidine kinase. Drug Metab Dispos. 2013;41:541–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Li H, Wang X, Wang X. The impact of CDA A79C gene polymorphisms on the response and hematologic toxicity in gemcitabine-treated patients: a meta-analysis. Int J Biol Markers. 2014;29:e224–32.PubMedCrossRefGoogle Scholar
  58. 58.
    van Kuilenburg AB. Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer. 2004;40:939–50.PubMedCrossRefGoogle Scholar
  59. 59.
    van Kuilenburg AB, Dobritzsch D, Meinsma R, Haasjes J, Waterham HR, Nowaczyk MJ, et al. Novel disease-causing mutations in the dihydropyrimidine dehydrogenase gene interpreted by analysis of the three-dimensional protein structure. Biochem J. 2002;364:157–63.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Deenen MJ, Meulendijks D, Cats A, Sechterberger MK, Severens JL, Boot H, et al. Upfront genotyping of DPYD*2A to individualize fluoropyrimidine therapy: a safety and cost analysis. J Clin Oncol. 2016;34:227–34.PubMedCrossRefGoogle Scholar
  61. 61.
    Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015;16:1639–50.PubMedCrossRefGoogle Scholar
  62. 62.
    Myers SN, Goyal RK, Roy JD, Fairfull LD, Wilson JW, Ferrell RE. Functional single nucleotide polymorphism haplotypes in the human equilibrative nucleoside transporter 1. Pharmacogenet Genomics. 2006;16:315–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Shi JY, Shi ZZ, Zhang SJ, Zhu YM, Gu BW, Li G, et al. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics. 2004;14:759–68.PubMedCrossRefGoogle Scholar
  64. 64.
    Bepler G, Zheng Z, Gautam A, Sharma S, Cantor A, Sharma A, et al. Ribonucleotide reductase M1 gene promoter activity, polymorphisms, population frequencies, and clinical relevance. Lung Cancer. 2005;47:183–92.PubMedCrossRefGoogle Scholar
  65. 65.
    Okazaki T, Jiao L, Chang P, Evans DB, Abbruzzese JL, Li D. Single-nucleotide polymorphisms of DNA damage response genes are associated with overall survival in patients with pancreatic cancer. Clin Cancer Res. 2008;14:2042–8.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bachmann K, Neumann A, Hinsch A, Nentwich MF, El Gammal AT, Vashist Y, et al. Cyclin D1 is a strong prognostic factor for survival in pancreatic cancer: analysis of CD G870A polymorphism, FISH and immunohistochemistry. J Surg Oncol. 2015;111:316–23.PubMedCrossRefGoogle Scholar
  67. 67.
    Millar EK, Dean JL, McNeil CM, O’Toole SA, Henshall SM, Tran T, et al. Cyclin D1b protein expression in breast cancer is independent of cyclin D1a and associated with poor disease outcome. Oncogene. 2009;28:1812–20.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Abramson VG, Troxel AB, Feldman M, Mies C, Wang Y, Sherman L, et al. Cyclin D1b in human breast carcinoma and coexpression with cyclin D1a is associated with poor outcome. Anticancer Res. 2010;30:1279–85.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Augello MA, Berman-Booty LD, Carr R 3rd, Yoshida A, Dean JL, Schiewer MJ, et al. Consequence of the tumor-associated conversion to cyclin D1b. EMBO Mol Med. 2015;7:628–47.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wu FH, Luo LQ, Liu Y, Zhan QX, Luo C, Luo J, et al. Cyclin D1b splice variant promotes alphavbeta3-mediated adhesion and invasive migration of breast cancer cells. Cancer Lett. 2014;355:159–67.PubMedCrossRefGoogle Scholar
  71. 71.
    Olshavsky NA, Comstock CE, Schiewer MJ, Augello MA, Hyslop T, Sette C, et al. Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res. 2010;70:3975–84.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Farren MR, Mace TA, Geyer S, Mikhail S, Wu C, Ciombor K, et al. Systemic immune activity predicts overall survival in treatment-naive patients with metastatic pancreatic cancer. Clin Cancer Res. 2016;22:2565–74.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Luo G, Guo M, Liu Z, Xiao Z, Jin K, Long J, et al. Blood neutrophil-lymphocyte ratio predicts survival in patients with advanced pancreatic cancer treated with chemotherapy. Ann Surg Oncol. 2015;22:670–6.PubMedCrossRefGoogle Scholar
  74. 74.
    Yamaguchi Y, Katata Y, Okawaki M, Sawaki A, Yamamura M. A prospective observational study of adoptive immunotherapy for cancer using zoledronate-activated killer (ZAK) Cells – an analysis for patients with incurable pancreatic cancer. Anticancer Res. 2016;36:2307–13.PubMedCrossRefGoogle Scholar
  75. 75.
    Middleton G, Greenhalf W, Costello E, Shaw V, Cox T, Ghaneh P, et al. Immunobiological effects of gemcitabine and capecitabine combination chemotherapy in advanced pancreatic ductal adenocarcinoma. Br J Cancer. 2016;114:510–8.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    De Remigis A, de Gruijl TD, Uram JN, Tzou SC, Iwama S, Talor MV, et al. Development of thyroglobulin antibodies after GVAX immunotherapy is associated with prolonged survival. Int J Cancer. 2015;136:127–37.PubMedCrossRefGoogle Scholar
  77. 77.
    McCormick KA, Coveler AL, Rossi GR, Vahanian NN, Link C, Chiorean EG. Pancreatic cancer: update on immunotherapies and algenpantucel-L. Hum Vaccin Immunother. 2016;12:563–75.PubMedCrossRefGoogle Scholar
  78. 78.
    Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3:e955691.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Cioffi M, Trabulo S, Hidalgo M, Costello E, Greenhalf W, Erkan M, et al. Inhibition of CD47 effectively targets pancreatic cancer stem cells via dual mechanisms. Clin Cancer Res. 2015;21:2325–37.PubMedCrossRefGoogle Scholar
  80. 80.
    Lo J, Lau EY, Ching RH, Cheng BY, Ma MK, Ng IO, et al. Nuclear factor kappa B-mediated CD47 up-regulation promotes sorafenib resistance and its blockade synergizes the effect of sorafenib in hepatocellular carcinoma in mice. Hepatology. 2015;62:534–45.PubMedCrossRefGoogle Scholar
  81. 81.
    Garg AD, Dudek AM, Ferreira GB, Verfaillie T, Vandenabeele P, Krysko DV, et al. ROS-induced autophagy in cancer cells assists in evasion from determinants of immunogenic cell death. Autophagy. 2013;9:1292–307.PubMedCrossRefGoogle Scholar
  82. 82.
    Michaud M, Xie X, Bravo-San Pedro JM, Zitvogel L, White E, Kroemer G. An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology. 2014;3:e944047.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Garg AD, Dudek AM, Agostinis P. Calreticulin surface exposure is abrogated in cells lacking, chaperone-mediated autophagy-essential gene, LAMP2A. Cell Death Dis. 2013;4:e826.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ciccolini J, Dahan L, Andre N, Evrard A, Duluc M, Blesius A, et al. Cytidine deaminase residual activity in serum is a predictive marker of early severe toxicities in adults after gemcitabine-based chemotherapies. J Clin Oncol. 2010;28:160–5.PubMedCrossRefGoogle Scholar
  85. 85.
    Mercier C, Raynal C, Dahan L, Ortiz A, Evrard A, Dupuis C, et al. Toxic death case in a patient undergoing gemcitabine-based chemotherapy in relation with cytidine deaminase downregulation. Pharmacogenet Genomics. 2007;17:841–4.PubMedCrossRefGoogle Scholar
  86. 86.
    Serdjebi C, Seitz JF, Ciccolini J, Duluc M, Norguet E, Fina F, et al. Rapid deaminator status is associated with poor clinical outcome in pancreatic cancer patients treated with a gemcitabine-based regimen. Pharmacogenomics. 2013;14:1047–51.PubMedCrossRefGoogle Scholar
  87. 87.
    Kondo N, Murakami Y, Uemura K, Sudo T, Hashimoto Y, Nakashima A, et al. Combined analysis of dihydropyrimidine dehydrogenase and human equilibrative nucleoside transporter 1 expression predicts survival of pancreatic carcinoma patients treated with adjuvant gemcitabine plus S-1 chemotherapy after surgical resection. Ann Surg Oncol. 2012;19(Suppl 3):S646–55.PubMedCrossRefGoogle Scholar
  88. 88.
    Vallbohmer D, Yang DY, Kuramochi H, Shimizu D, Danenberg KD, Lindebjerg J, et al. DPD is a molecular determinant of capecitabine efficacy in colorectal cancer. Int J Oncol. 2007;31:413–8.PubMedGoogle Scholar
  89. 89.
    Shimoda M, Kubota K, Shimizu T, Katoh M. Randomized clinical trial of adjuvant chemotherapy with S-1 versus gemcitabine after pancreatic cancer resection. Br J Surg. 2015;102:746–54.PubMedCrossRefGoogle Scholar
  90. 90.
    Wei CH, Gorgan TR, Elashoff DA, Hines OJ, Farrell JJ, Donahue TR. A meta-analysis of gemcitabine biomarkers in patients with pancreaticobiliary cancers. Pancreas. 2013;42:1303–10.PubMedCrossRefGoogle Scholar
  91. 91.
    Boskos CS, Liacos C, Korkolis D, Aygerinos K, Lamproglou I, Terpos E, et al. Thymidine phosphorylase to dihydropyrimidine dehydrogenase ratio as a predictive factor of response to preoperative chemoradiation with capecitabine in patients with advanced rectal cancer. J Surg Oncol. 2010;102:408–12.PubMedCrossRefGoogle Scholar
  92. 92.
    Honda J, Sasa M, Moriya T, Bando Y, Hirose T, Takahashi M, et al. Thymidine phosphorylase and dihydropyrimidine dehydrogenase are predictive factors of therapeutic efficacy of capecitabine monotherapy for breast cancer-preliminary results. J Med Invest. 2008;55:54–60.PubMedCrossRefGoogle Scholar
  93. 93.
    Saif MW, Hashmi S, Bell D, Diasio RB. Prognostication of pancreatic adenocarcinoma by expression of thymidine phosphorylase/dihydropyrimidine dehydrogenase ratio and its correlation with survival. Expert Opin Drug Saf. 2009;8:507–14.PubMedCrossRefGoogle Scholar
  94. 94.
    Tsujie M, Nakamori S, Nakahira S, Takahashi Y, Hayashi N, Okami J, et al. Human equilibrative nucleoside transporter 1, as a predictor of 5-fluorouracil resistance in human pancreatic cancer. Anticancer Res. 2007;27:2241–9.PubMedGoogle Scholar
  95. 95.
    Marechal R, Mackey JR, Lai R, Demetter P, Peeters M, Polus M, et al. Human equilibrative nucleoside transporter 1 and human concentrative nucleoside transporter 3 predict survival after adjuvant gemcitabine therapy in resected pancreatic adenocarcinoma. Clin Cancer Res. 2009;15:2913–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Poplin E, Wasan H, Rolfe L, Raponi M, Ikdahl T, Bondarenko I, et al. Randomized, multicenter, phase II study of CO-101 versus gemcitabine in patients with metastatic pancreatic ductal adenocarcinoma: including a prospective evaluation of the role of hENT1 in gemcitabine or CO-101 sensitivity. J Clin Oncol. 2013;31:4453–61.PubMedCrossRefGoogle Scholar
  97. 97.
    Svrcek M, Cros J, Marechal R, Bachet JB, Flejou JF, Demetter P. Human equilibrative nucleoside transporter 1 testing in pancreatic ductal adenocarcinoma: a comparison between murine and rabbit antibodies. Histopathology. 2015;66:457–62.PubMedCrossRefGoogle Scholar
  98. 98.
    Nakano Y, Tanno S, Koizumi K, Nishikawa T, Nakamura K, Minoguchi M, et al. Gemcitabine chemoresistance and molecular markers associated with gemcitabine transport and metabolism in human pancreatic cancer cells. Br J Cancer. 2007;96:457–63.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Nakagawa N, Murakami Y, Uemura K, Sudo T, Hashimoto Y, Kondo N, et al. Combined analysis of intratumoral human equilibrative nucleoside transporter 1 (hENT1) and ribonucleotide reductase regulatory subunit M1 (RRM1) expression is a powerful predictor of survival in patients with pancreatic carcinoma treated with adjuvant gemcitabine-based chemotherapy after operative resection. Surgery. 2013;153:565–75.PubMedCrossRefGoogle Scholar
  100. 100.
    Rosell R, Danenberg KD, Alberola V, Bepler G, Sanchez JJ, Camps C, et al. Ribonucleotide reductase messenger RNA expression and survival in gemcitabine/cisplatin-treated advanced non-small cell lung cancer patients. Clin Cancer Res. 2004;10:1318–25.PubMedCrossRefGoogle Scholar
  101. 101.
    Marechal R, Bachet JB, Mackey JR, Dalban C, Demetter P, Graham K, et al. Levels of gemcitabine transport and metabolism proteins predict survival times of patients treated with gemcitabine for pancreatic adenocarcinoma. Gastroenterology. 2012;143:664.PubMedCrossRefGoogle Scholar
  102. 102.
    Kim R, Tan A, Lai KK, Jiang J, Wang Y, Rybicki LA, et al. Prognostic roles of human equilibrative transporter 1 (hENT-1) and ribonucleoside reductase subunit M1 (RRM1) in resected pancreatic cancer. Cancer. 2011;117:3126–34.PubMedCrossRefGoogle Scholar
  103. 103.
    Ashida R, Nakata B, Shigekawa M, Mizuno N, Sawaki A, Hirakawa K, et al. Gemcitabine sensitivity-related mRNA expression in endoscopic ultrasound-guided fine-needle aspiration biopsy of unresectable pancreatic cancer. J Exp Clin Cancer Res. 2009;28:83.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Farrell JJ, Moughan J, Wong JL, Regine WF, Schaefer P, Benson AB 3rd, et al. Precision medicine and pancreatic cancer: a gemcitabine pathway approach. Pancreas. 2016;45:1485–93.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Kollareddy M, Dimitrova E, Vallabhaneni KC, Chan A, Le T, Chauhan KM, et al. Regulation of nucleotide metabolism by mutant p53 contributes to its gain-of-function activities. Nat Commun. 2015;6:7389.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Wakasa K, Kawabata R, Nakao S, Hattori H, Taguchi K, Uchida J, et al. Dynamic modulation of thymidylate synthase gene expression and fluorouracil sensitivity in human colorectal cancer cells. PLoS One. 2015;10:e0123076.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Oguri T, Achiwa H, Bessho Y, Muramatsu H, Maeda H, Niimi T, et al. The role of thymidylate synthase and dihydropyrimidine dehydrogenase in resistance to 5-fluorouracil in human lung cancer cells. Lung Cancer. 2005;49:345–51.PubMedCrossRefGoogle Scholar
  108. 108.
    Formentini A, Sander S, Denzer S, Straeter J, Henne-Bruns D, Kornmann M. Thymidylate synthase expression in resectable and unresectable pancreatic cancer: role as predictive or prognostic marker? Int J Colorectal Dis. 2007;22:49–55.PubMedCrossRefGoogle Scholar
  109. 109.
    Hu YC, Komorowski RA, Graewin S, Hostetter G, Kallioniemi OP, Pitt HA, et al. Thymidylate synthase expression predicts the response to 5-fluorouracil-based adjuvant therapy in pancreatic cancer. Clin Cancer Res. 2003;9:4165–71.PubMedGoogle Scholar
  110. 110.
    Komori S, Osada S, Mori R, Matsui S, Sanada Y, Tomita H, et al. Contribution of thymidylate synthase to gemcitabine therapy for advanced pancreatic cancer. Pancreas. 2010;39:1284–92.PubMedCrossRefGoogle Scholar
  111. 111.
    Shimoda M, Sawada T, Kubota K. Thymidylate synthase and dihydropyrimidine dehydrogenase are upregulated in pancreatic and biliary tract cancers. Pathobiology. 2009;76:193–8.PubMedCrossRefGoogle Scholar
  112. 112.
    Takamura M, Nio Y, Yamasawa K, Dong M, Yamaguchi K, Itakura M. Implication of thymidylate synthase in the outcome of patients with invasive ductal carcinoma of the pancreas and efficacy of adjuvant chemotherapy using 5-fluorouracil or its derivatives. Anticancer Drugs. 2002;13:75–85.PubMedCrossRefGoogle Scholar
  113. 113.
    Inoue T, Hibi K, Nakayama G, Komatsu Y, Fukuoka T, Kodera Y, et al. Expression level of thymidylate synthase is a good predictor of chemosensitivity to 5-fluorouracil in colorectal cancer. J Gastroenterol. 2005;40:143–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Soong R, Shah N, Salto-Tellez M, Tai BC, Soo RA, Han HC, et al. Prognostic significance of thymidylate synthase, dihydropyrimidine dehydrogenase and thymidine phosphorylase protein expression in colorectal cancer patients treated with or without 5-fluorouracil-based chemotherapy. Ann Oncol. 2008;19:915–9.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Karanikas M, Esempidis A, Chasan ZT, Deftereou T, Antonopoulou M, Bozali F, et al. Pancreatic cancer from molecular pathways to treatment opinion. J Cancer. 2016;7:1328–39.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother. 2006;7:1041–53.PubMedCrossRefGoogle Scholar
  117. 117.
    Desai N, Trieu V, Damascelli B, Soon-Shiong P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl Oncol. 2009;2:59–64.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Hidalgo M, Plaza C, Musteanu M, Illei P, Brachmann CB, Heise C, et al. SPARC expression did not predict efficacy of nab-paclitaxel plus gemcitabine or gemcitabine alone for metastatic pancreatic cancer in an exploratory analysis of the phase III MPACT trial. Clin Cancer Res. 2015;21:4811–8.PubMedCrossRefGoogle Scholar
  119. 119.
    Schneeweiss A, Seitz J, Smetanay K, Schuetz F, Jaeger D, Bachinger A, et al. Efficacy of nab-paclitaxel does not seem to be associated with SPARC expression in metastatic breast cancer. Anticancer Res. 2014;34:6609–15.PubMedGoogle Scholar
  120. 120.
    Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmana J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33:244–50.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Koorstra JB, Hong SM, Shi C, Meeker AK, Ryu JK, Offerhaus GJ, et al. Widespread activation of the DNA damage response in human pancreatic intraepithelial neoplasia. Mod Pathol. 2009;22:1439–45.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Kim H, Saka B, Knight S, Borges M, Childs E, Klein A, et al. Having pancreatic cancer with tumoral loss of ATM and normal TP53 protein expression is associated with a poorer prognosis. Clin Cancer Res. 2014;20:1865–72.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Fiorini C, Cordani M, Padroni C, Blandino G, Di Agostino S, Donadelli M. Mutant p53 stimulates chemoresistance of pancreatic adenocarcinoma cells to gemcitabine. Biochim Biophys Acta. 1853;2015:89–100.Google Scholar
  124. 124.
    Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 2010;29:4741–51.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Quint K, Tonigold M, Di Fazio P, Montalbano R, Lingelbach S, Ruckert F, et al. Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. Int J Oncol. 2012;41:2093–102.PubMedCrossRefGoogle Scholar
  126. 126.
    Arumugam T, Ramachandran V, Fournier KF, Wang H, Marquis L, Abbruzzese JL, et al. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009;69:5820–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Jia Y, Xie J. Promising molecular mechanisms responsible for gemcitabine resistance in cancer. Genes Dis. 2015;2:299–306.CrossRefGoogle Scholar
  128. 128.
    Singh A, Greninger P, Rhodes D, Koopman L, Violette S, Bardeesy N, et al. A gene expression signature associated with “K-Ras addiction” reveals regulators of EMT and tumor cell survival. Cancer Cell. 2009;15:489–500.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, et al. Inhibition of hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 2009;324:1457–61.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Catenacci DV, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR, et al. Randomized phase Ib/II study of gemcitabine plus placebo or vismodegib, a hedgehog pathway inhibitor, in patients with metastatic pancreatic cancer. J Clin Oncol. 2015;33:4284–92.PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Rhim AD, Oberstein PE, Thomas DH, Mirek ET, Palermo CF, Sastra SA, et al. Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell. 2014;25:735–47.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Ozdemir BC, Pentcheva-Hoang T, Carstens JL, Zheng X, Wu CC, Simpson TR, et al. Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell. 2014;25:719–34.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Aiello NM, Bajor DL, Norgard RJ, Sahmoud A, Bhagwat N, Pham MN, et al. Metastatic progression is associated with dynamic changes in the local microenvironment. Nat Commun. 2016;7:12819.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Jiang H, Hegde S, Knolhoff BL, Zhu Y, Herndon JM, Meyer MA, et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med. 2016;22:851.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Hingorani SR, Harris WP, Beck JT, Berdov BA, Wagner SA, Pshevlotsky EM, et al. Phase 1b study of PEGylated recombinant human hyaluronidase and gemcitabine in patients with advanced pancreatic cancer. Clin Cancer Res. 2016;22:2848–54.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Nils Elander
    • 1
  • Karen Aughton
    • 2
  • William Greenhalf
    • 3
  1. 1.Department of OncologyLinköping University HospitalLinköpingSweden
  2. 2.Molecular and Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
  3. 3.Department of Molecular and Clinical Cancer MedicineInstitute of Translational Medicine, University of LiverpoolLiverpoolUK

Personalised recommendations