Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Hazardous Waste Incineration Ashes and Their Utilization

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_97-3



Solid incineration residue


Potential to do harm


Municipal waste incinerator


Chance that harm occurs

WTE incinerator

Waste-to-energy incinerator, incinerator also producing useful energy (e.g., electricity)

Definition of the Subject

This chapter deals with hazardous solid residues, usually called ashes , from waste incineration. What is to be considered hazardous in this context shows geographical and temporal variability. Currently, hazardous waste incineration ashes are mostly dumped, or disposed of, in landfills or ash lagoons. There is however also substantial, but geographically variable, utilization of such ashes, mostly in construction, including civil engineering (e.g., in roads, embankments), and there have been proposals for wider utilization. Much research has been done on better and wider utilization of hazardous waste incineration ashes, but little thereof has found its way to actual commercial practice. At the end of the chapter, the matter...


Waste Incineration Ash Bottom Ash Incinerated Sewage Sludge Ash Cement Clinker Production Hazardous Elements 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. 1.
    Johannessen KM (1996) The regulation of municipal waste incineration ash; a legal review and update. J Hazard Mater 47:383–393CrossRefGoogle Scholar
  2. 2.
    Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43:313–336CrossRefGoogle Scholar
  3. 3.
    Cyr M, Coutand M, Clastres PJ (2007) Technological and environmental behavior of sewage sludge ash (SSA) in cement-based materials. Cem Concr Res 37:1278–1289CrossRefGoogle Scholar
  4. 4.
    Murakami T, Suzuki Y, Nagasawa H, Yamamoto T, Koseki T, Hirose H, Okamoto S (2009) Combustion characteristics of sewage sludge in an incineration plant to energy recovery. Fuel Process Technol 90:778–783CrossRefGoogle Scholar
  5. 5.
    Sawell SE, Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson D, van der Sloot HA, Vehlow J (1995) An international perspective on the characterization and management of residues from MSW incinerators. Biomass Bioenergy 9:377–386CrossRefGoogle Scholar
  6. 6.
    Römbke J, Moser T, Moser H (2009) Ecotoxicological characterization of 12 incineration ashes using 6 laboratory tests. Waste Manag 29:2475–2482CrossRefGoogle Scholar
  7. 7.
    Gidarakos E, Petrantonaki M, Anastasadou K, Schramm K (2009) Characterization and hazard evaluation of bottom ash produced from incinerated hospital waste. J Hazard Mater 172:935–942CrossRefGoogle Scholar
  8. 8.
    Coutand M, Cyr M, Deydier E, Guilet R, Clastres P (2008) Characteristics of industrial and laboratory meat and bone meal ashes and their potential applications. J Hazard Mater 150:522–532CrossRefGoogle Scholar
  9. 9.
    Karamalidis AK, Voudrias EA (2009) Leaching and immobilization behavior of Zn and Cr from cement-based stabilization/solidification of ash produced from incineration of refinery oily sludge. Environ Eng Sci 26:81–96CrossRefGoogle Scholar
  10. 10.
    Sakanakura H (2005) Diffusion test of 20 kinds of waste molten slags and competitive materials. J Mater Cycles Waste Manag 7:71–77CrossRefGoogle Scholar
  11. 11.
    Chiang K, Hu Y (2010) Water washing effects on metals emission reduction during municipal solid waste incinerator (MSWI) fly ash melting process. Waste Manag.  https://doi.org/10.1016/j.wasman.2009.12.009
  12. 12.
    Tian S, Yu M, Wang W, Wang Q, Wu Z (2009) Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy. Environ Sci Technol 43:9084–9088CrossRefGoogle Scholar
  13. 13.
    Donatello S, Tyrer M, Cheeseman CR (2010) EU landfill waste acceptance criteria and EU hazardous waste directive compliance testing of incinerated sewage sludge ash. Waste Manag 20:63–71CrossRefGoogle Scholar
  14. 14.
    Gunning P, Hills CD, Araizi PK, Maries A, Wray DS (2014) Carbon capture using wastes: a review. http://gala.gle.ac.uk/id/print/13579. Accessed 4 May 2017
  15. 15.
    Reijnders L (2014) Phosphorus resources, their depletion and conservation, a review. Resour Conserv Recycl 93:32–49CrossRefGoogle Scholar
  16. 16.
    Donatello S, Cheeseman CR (2013) Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag 33:2328–2340CrossRefGoogle Scholar
  17. 17.
    Nie Y (2008) Development and prospects of municipal solid waste (MSW) incineration in China. Front Environ Sci Eng China 2:1–7CrossRefGoogle Scholar
  18. 18.
    Barbosa R, Lapa N, Boavida D, Lopes H, Gulyurtlu I, Mendes B (2009) Co-combustion of coal and sewage sludge: chemical and ecotoxicological properties of ashes. J Hazard Mater 170:902–919CrossRefGoogle Scholar
  19. 19.
    Wiles CC (1996) Municipal solid waste combustion ash: state-of-the-knowledge. J Hazard Mater 47:325–346CrossRefGoogle Scholar
  20. 20.
    Reich J (2003) Slag from hazardous waste incineration; reduction of heavy metal leaching. Waste Manag Res 21:110–118CrossRefGoogle Scholar
  21. 21.
    Zhao I, Zhang F, Chen M, Liu Z, Wu DBJ (2010) Typical pollutants in bottom ashes from a medical waste incinerator. J Hazard Mater 173:181–185CrossRefGoogle Scholar
  22. 22.
    Vehlow J, Bergfeldt B, Hunsinger H (2006) PCDD/F and related compounds in solid residues from municipal solid waste incineration – a literature review. Waste Manag Res 24:404–420CrossRefGoogle Scholar
  23. 23.
    Chandler AJ, Eighmy TT, Hartlen J, Hjelmar O, Kosson DS, Sawell SE, van der Sloot HA, Vehlow J (1997) Municipal solid waste incinerator residues. Elsevier Science, AmsterdamGoogle Scholar
  24. 24.
    Durnusoglu E, Bakoglu M, Karademir A, Kirli L (2009) Adsorbable organic halogens (AOX) in solid residues from hazardous and clinical waste incineration. J Environ Sci Health A 41:1699–1714CrossRefGoogle Scholar
  25. 25.
    Neuer-Etscheidt K, Nordsieck HO, Liu Y, Kettrup A, Zimmermann R (2006) PCDD/F and other micropollutants in MSWI crude gas and ashes during plant start-up and shut down processes. Environ Sci Technol 40:342–349CrossRefGoogle Scholar
  26. 26.
    Rubli S, Medilanski E, Belevi H (2000) Characterization of total organic carbon in solid residues provides insight into sludge incineration processes. Environ Sci Technol 34:1772–1777CrossRefGoogle Scholar
  27. 27.
    Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 28:2097–2121CrossRefGoogle Scholar
  28. 28.
    Freyssinet P, Piantone P, Azaroual M, Itard Y, Clozel-Lecloup GD, Baubron JC (2002) Chemical changes and leachate mass balance of municipal solid waste bottom ash submitted to weathering. Waste Manag 22:159–172CrossRefGoogle Scholar
  29. 29.
    Dugenies S, Combrisson J, Casablanca H, Grenier-Loustalot MF (1999) Municipal solid waste incineration bottom ash: characterization and kinetic studies of organic matter. Environ Sci Technol 33:1110–1115CrossRefGoogle Scholar
  30. 30.
    Liu Y, Li Y, Li X, Jiang Y (2008) Leaching behavior of heavy metals and PAHs from MSWI bottom ash in a long-term static immersing experiment. Waste Manag 28:1126–1136CrossRefGoogle Scholar
  31. 31.
    Okrent D (1999) On intergenerational equity and its clash with intragenerational equity and on the need for policies to guide regulation of disposal of wastes and other activities posing very long-term risks. Risk Anal 19:877–901Google Scholar
  32. 32.
    Dellinger B, D’Alessio AD, D’Anna AD, Ciajolo A, Gullett B, Henry H, Keener M, Lighty J, Lomicki S, Lucas D, Oberdörster G, Pitea D, Suk W, Sarofim A, Smith KR, Stoeger T, Tolbert P, Wyzga R, Zimmermann R (2008) Combustion byproducts and their health effects. Environ Eng Sci 25:1107–1114CrossRefGoogle Scholar
  33. 33.
    Shih S, Wang Y, Chang J, Jang J, Kuo F, Wang L, Chang-Chien G (2006) Comparisons of levels of polychlorinated dibenzo-p-dioxins/benzofurans in the surrounding environment and workplace of two municipal solid waste incinerators. J Hazard Mater B 137:1817–1830CrossRefGoogle Scholar
  34. 34.
    Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state on nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89CrossRefGoogle Scholar
  35. 35.
    Reijnders L (2012) Human health hazards of persistent inorganic and carbon nanoparticles. J Mater Sci 47:5061–5073CrossRefGoogle Scholar
  36. 36.
    Chen H, Chen I, Chia T (2010) Occupational exposure and DNA strand breakage of workers in bottom ash recovery and fly ash treatment plants. J Hazard Mater 174:23–27CrossRefGoogle Scholar
  37. 37.
    Förster H, Thajudeen T, Funk C, Peukert W (2016) Separation of nanoparticles: filtration and scavenging from waste incineration plants. Waste Manag 52:346–352CrossRefGoogle Scholar
  38. 38.
    Mitrano DM, Mehrabi K, Dasilva YAR, Nowack B (2017) Mobility of metallic (nano) particles in leachates from landfills containing waste incineration residues. Environ Sci Nano 4:480–492CrossRefGoogle Scholar
  39. 39.
    Lin K, Chen B (2006) Understanding biotoxicity for reusability of municipal solid waste incinerator (MSWI) ash. J Hazard Mater A 138:9–15CrossRefGoogle Scholar
  40. 40.
    Chou J, Wey M, Liang H, Chang S (2009) Biotoxicity evaluation of fly ash and bottom ash from different municipal solid waste incinerators. J Hazard Mater 168:197–202CrossRefGoogle Scholar
  41. 41.
    Takeuchi M, Kawahata H, Gupta LP, Itouga M, Sakakibara H, Ohta H, Komai T, Ono Y (2009) Chemistry of fly ash and cyclone ash leachate from waste materials and effects of ash leachates on bacterial growth, nitrogen-transformation activity, and metal accumulation. J Hazard Mater 165:967–973CrossRefGoogle Scholar
  42. 42.
    Shoji R, Nakayama H, Sakai Y, Mohri S, Yamada M (2008) Evaluation of the ecotoxicity of solid wastes using rapid leaching test and bioassays. J Environ Sci Health A 43:1048–1053CrossRefGoogle Scholar
  43. 43.
    Triffault-Bouchet G, Clement B, Blake G (2005) Ecotoxicological assessment of pollutant flux released from bottom ash reused in road construction. Aquat Ecosyst Health Manag 8:405–414CrossRefGoogle Scholar
  44. 44.
    Reijnders L (2009) Are soil pollution risks established by governments the same as actual risks? Appl Environ Soil Sci 237038:1–7Google Scholar
  45. 45.
    Clement B, Triffault-Bouchet LA, Carbonel J (2005) Are percolates released from solid waste incineration bottom ashes safe for lentic ecosystems? A laboratory ecotoxicological approach based on 100 litre indoor microcosms. Aquat Ecosyst Health Manag 8:427–439CrossRefGoogle Scholar
  46. 46.
    Michalzik B, Ilgen G, Hertel F, Hantsch S, Bilitewski B (2007) Emissions of organo-metal compounds via the leachate and gas pathway from two differently pre-treated municipal waste materials – a landfill study. Waste Manag 27:497–509CrossRefGoogle Scholar
  47. 47.
    Sabbas T, Poletti A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Ambicher S, Klein R, Lechner P (2003) Management of municipal solid waste incineration residues. Waste Manag 23:61–88CrossRefGoogle Scholar
  48. 48.
    Kim Y, Osako M (2004) Effect of adsorption capacity of dissolved humic matter on leachability of dioxins from raw and treated fly ashes of municipal solid waste incinerators. Arch Environ Contam Toxicol 46:8–16CrossRefGoogle Scholar
  49. 49.
    Todorovic J, Ecke H (2006) Treatment of MSWI residues for utilization as secondary construction minerals: a review of methods. Miner Energy 20(4–5):45–59CrossRefGoogle Scholar
  50. 50.
    Lidelöw S, Lagerkvist A (2007) Evaluation of leachate emissions from crushed rock and municipal solid waste incineration bottom ash used in road construction. Waste Manag 27:1356–1365CrossRefGoogle Scholar
  51. 51.
    Apul D, Gardner K, Eighmy T, Linder E, Frizzell T, Roberson R (2005) Probabilistic modeling of one-dimensional water movement and leaching from highway embankments containing secondary materials. Environ Eng Sci 22:156–169CrossRefGoogle Scholar
  52. 52.
    Kosson DS, van der Sloot HA, Sanchez F, Garrabrants AC (2002) An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environ Eng Sci 19:159–204CrossRefGoogle Scholar
  53. 53.
    Dabo D, Badreddine R, de Windt L, Drouadaine I (2009) Ten-year chemical evolution of leachate and municipal solid waste incineration bottom ash used in a test road site. J Hazard Mater 172:904–913CrossRefGoogle Scholar
  54. 54.
    Reijnders L (2007) Cleaner phosphogypsum, coal combustion ashes and waste incineration ashes for application in building materials: a review. Build Environ 42:1036–1042CrossRefGoogle Scholar
  55. 55.
    Del Valle-Zermeno R, Medina E, Chimenos JM, Formosa J, Liorente I, Bastidas DM (2017) Influence of MSW bottom ash used as unbound granular material on the corrosion behaviour of reinforced concrete. Int J Mater Cycles Waste Manag 19:124–133CrossRefGoogle Scholar
  56. 56.
    Aguiar del Toro M, Calmano W, Ecke H (2009) Wet extraction of heavy metals and chloride from MSWI and straw combustion ashes. Waste Manag 29:2494–2499CrossRefGoogle Scholar
  57. 57.
    Sakanakura H (2007) Formation and durability of dithiocarbamic metals in stabilized air pollution control residue from municipal solid waste incineration and melting processes. Environ Sci Technol 41:1717–1722CrossRefGoogle Scholar
  58. 58.
    Bosshard RP, Bachofen R, Brandl H (1996) Metal leaching from fly ash from municipal waste incineration by Aspergillus niger. Environ Sci Technol 30:3066–3071CrossRefGoogle Scholar
  59. 59.
    Yang J, Wang QH, Wang Q, Wu TJ (2008) Comparison of one-step and two step bioleaching for heavy metal removal from municipal solid waste incineration fly ash. Environ Eng Sci 25:783–789Google Scholar
  60. 60.
    Bayuseno A, Schmahl WW, Müllejans T (2009) Hydrothermal processing of MSWI fly ash – towards new stable minerals and fixation of heavy metals. J Hazard Mater 167:250–259CrossRefGoogle Scholar
  61. 61.
    Fraissler G, Jollet M, Mattenberger H, Brunner T, Obernberger I (2009) Thermodynamic equilibrium calculations concerning the removal of heavy metals from sewage sludge ash by chlorination. Chem Eng Process Process Intensif 48:152–164CrossRefGoogle Scholar
  62. 62.
    Bo D, Zhang F, Zhao L (2009) Influence of supercritical water treatment on heavy metals in medical waste incineration ash. J Hazard Mater 170:66–71CrossRefGoogle Scholar
  63. 63.
    Funari V, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H (2017) Metal removal from municipal solid waste incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag 60:367–406CrossRefGoogle Scholar
  64. 64.
    Rosenkrantz T, Kisser J, Wenzwel WW, Puschenreiter M (2017) Waste or substrate for metal hyperaccumulating plants –the potential of phytomining on waste incineration bottom ash. Sci Total Environ 575:910–918CrossRefGoogle Scholar
  65. 65.
    Guedes P, Couto N, Ottosen LM, Kirkelund GM, Mateus E, Ribeiro AB (2016) Valorisation of ferric sewage sludge ashes; potential as a phosphorus source. Waste Manag 52:193–201CrossRefGoogle Scholar
  66. 66.
    Silva RV, de Brito J, Lynn CJ, Dhir RK (2017) Use of municipal solid waste incineration bottom ashes in alkali-activated materials, ceramics and granular applications: a review. Waste Manag 68:207–220CrossRefGoogle Scholar
  67. 67.
    Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10CrossRefGoogle Scholar
  68. 68.
    Siddique R (2008) Waste materials and by-products in concrete. Springer, LondonGoogle Scholar
  69. 69.
    Dou X, Ren F, Nguyen MQ, Ahamed A, Yin K, Chan WP, Chang VW (2017) Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renew Sust Energ Rev 79:24–38CrossRefGoogle Scholar
  70. 70.
    Oehmig WN, Roessler JG, Blaisi NI, Townsend TG (2015) Contemporary practices and findings essential to the development of effective MSWI ash reuse policy in the United States. Environ Sci Pol 51:3014–3312CrossRefGoogle Scholar
  71. 71.
    Yao J, Li W, Kong Q, Wu Y, He R, Shen D (2010) Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel 89:616–622Google Scholar
  72. 72.
    Huang C, Yang W, Ma H, Song Y (2006) The potential of recycling and reusing municipal solid waste incinerator ash in Taiwan. Waste Manag 26:979–987CrossRefGoogle Scholar
  73. 73.
    Pan JR, Huang C, Kao J, Lin S (2008) Recycling MSWI bottom and fly ash as raw materials in Portland cement. Waste Manag 28:1113–1118CrossRefGoogle Scholar
  74. 74.
    Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 96:201–216CrossRefGoogle Scholar
  75. 75.
    Toller S, Kärrman E, Gustafsson JP, Magnusson Y (2009) Environmental assessment of incinerator residue utilization. Waste Manag 29:2071–2077CrossRefGoogle Scholar
  76. 76.
    Francois D, Pierson K (2009) Environmental assessment of a road site built with MSWI residue. Sci Total Environ 407:5945–5960CrossRefGoogle Scholar
  77. 77.
    Huang W, Tang H, Lin K, Liao M (2010) An emerging pollutant contributing to cytotoxicity of MSWI ash wastes: strontium. J Hazard Mater 173:597–604CrossRefGoogle Scholar
  78. 78.
    Dubey B, Townsend T (2007) Leaching of milled asphalt pavement amended with waste-to-energy ash. Int J Environ Waste Manag 1:145–158CrossRefGoogle Scholar
  79. 79.
    Kayhanian M, Vichare A, Green PG, Harvey J (2009) Leachability of dissolved chromium in asphalt and concrete surfacing materials. J Environ Manag 90:3574–3580CrossRefGoogle Scholar
  80. 80.
    Tervahattu H, Kupiainen KJ, Räisänen M, Mäkelä T, Hillamo R (2006) Generation of urban road dust from anti-skid and asphalt concrete aggregates. J Hazard Mater 132:39–46CrossRefGoogle Scholar
  81. 81.
    Birgisdottir H, Bhander G, Hauschild MZ, Christensen TH (2007) Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling bottom ash in road construction or landfilling in Denmark evaluated by the ROAD-RES model. Waste Manag 27:S75–S84CrossRefGoogle Scholar
  82. 82.
    Tervahattu H, Kupiainen KJ, Räisänen M, Mäkelä T, Hillamao K (2006) Generation of urban road dust from anti-skid and asphalt concrete aggregates. J Hazard Mater 132:39–46CrossRefGoogle Scholar
  83. 83.
    Travat I, Lidelow S, Anderas L, Tham C, Lagerkvist A (2009) Assessing the environmental impact of ashes used as landfill cover construction. Waste Manag 29:1336–1246CrossRefGoogle Scholar
  84. 84.
    Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model- based prediction of long term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29:839–850CrossRefGoogle Scholar
  85. 85.
    Reijnders L (2007) The cement industry as a scavenger in industrial ecology and the management of hazardous substances. J Ind Ecol 11(1):15–25Google Scholar
  86. 86.
    Karstensen KH, Kinh NK, Thang LB, Vet PH, Tuan ND, Toi DT, Hung NH, Quan TM, Hanh LB, Thang DH (2006) Environmentally sound destruction of obsolete pesticides in developing countries using cement kilns. Environ Sci Pol 9:577–586CrossRefGoogle Scholar
  87. 87.
    Sidhu S, Kast N, Edwards P, Dellinger B (2001) Hazardous air pollutants formation from reactions of raw meal organics in cement kilns. Chemosphere 42:499–506CrossRefGoogle Scholar
  88. 88.
    Chen C (2004) The emission inventory of PCDD/PCDF in Taiwan. Chemosphere 54:1413–1420CrossRefGoogle Scholar
  89. 89.
    Chrysochoou M, Dermatas D (2006) Evaluation of ettringite and hydrolumite formation for heavy metal immobilization. J Hazard Mater 136:20–33CrossRefGoogle Scholar
  90. 90.
    van der Sloot HA, Seignette P, van Zomeren A, Hoede D, Meeuwsen JCL (2003) Effects of alternative materials, life cycle stages, testing and criteria development. www.ecn.nl
  91. 91.
    Winder C, Carmody M (2002) The dermal toxicity of cement. Toxicol Ind Health 18:321–331CrossRefGoogle Scholar
  92. 92.
    Liden C (2001) Legislative and preventive measures related to contact dermatitis. Contact Dermatitis 44:65–69CrossRefGoogle Scholar
  93. 93.
    Lannoye PA (2003) Report on proposed directive of the European parliament and council regarding the limitation of marketing nonylphenol, nonylphenolethoxylate and cement. European Parliament, BrusselsGoogle Scholar
  94. 94.
    Costa M, Klein CB (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit Rev Toxicol 36:155–163CrossRefGoogle Scholar
  95. 95.
    Winder C, Carmody M (2002) The dermal toxicity of cement. Toxicol Ind Health 18:321–331CrossRefGoogle Scholar
  96. 96.
    Guo Q (1997) Increases of lead and chromium in drinking water from using cement-mortar-lined pipes: initial modeling and assessment. J Hazard Mater 56:181–213CrossRefGoogle Scholar
  97. 97.
    Pedersen AJ, Frandsen FJ, Riber C, Astrup T, Thomsen SN, Lundtorp K, Mortensen LF (2009) A full-scale study on the partitioning of trace elements in municipal solid waste incineration- effects of firing different waste types. Energy Fuel 23:3475–3489CrossRefGoogle Scholar
  98. 98.
    Alba N, Vazquez E, Gasso S, Baldasano JM (2001) Stabilization/solidification of MSW incineration residues from facilities with different air pollution systems. Durability of matrices versus carbonation. Waste Manag 21:313–324CrossRefGoogle Scholar
  99. 99.
    Yvon J, Antenucci D, Lorenzi G, Dutre V, Leclerq D, Nielsen P, Veschkens M (2006) Long term stability in landfills of municipal solid waste incineration fly ashes solidified/stabilized by hydraulic binders. J Geochem Explor 90:143–155CrossRefGoogle Scholar
  100. 100.
    Meima JA, Comans RNJ (1998) Reducing Sb leaching from municipal solid waste incineration bottom ash by addition of sorbent materials. J Geochem Explor 62:299–304CrossRefGoogle Scholar
  101. 101.
    Valls S, Vazquez E (2001) Accelerated carbonation of sewage sludge-cement-sand mortars and its environmental impact. Cem Concr Res 31:1271–1276CrossRefGoogle Scholar
  102. 102.
    Ecke H (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manag 23:631–640CrossRefGoogle Scholar
  103. 103.
    Garrabrants AC, Sanchez F, Kosson DS (2004) Changes in constituent equilibrium leaching and pore water characteristics of a Portland cement mortar as a result of carbonation. Waste Manag 24:19–36CrossRefGoogle Scholar
  104. 104.
    Idachaba MA, Nyavor K, Egiebor NO (2003) Microbial stability evaluation of cement based waste forms at different waste to cement ratios. J Hazard Mater B 96:331–340CrossRefGoogle Scholar
  105. 105.
    Brombacher C, Bachofen R, Brandl H (1997) Biohydrological processing of solids. A patent review. Appl Microbiol Biotechnol 48:577–587CrossRefGoogle Scholar
  106. 106.
    Yang J, Wang Q, Luo Q, Wang Q, Wu T (2009) Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J 46:294–299CrossRefGoogle Scholar
  107. 107.
    van Zomeren A, Comans RNJ (2009) Carbon speciation in municipal solid waste incinerator (MSWI) bottom ash in relation to facilitated metal leaching. Waste Manag 29:2059–2064CrossRefGoogle Scholar
  108. 108.
    Twardowska J, Szcezepanska J (2002) Solid waste: terminological and long term environmental risk management problems exemplified in a power plant fly ash study. Sci Total Environ 285:28–51CrossRefGoogle Scholar
  109. 109.
    Bayard R, Pestre C, Gourdon R (2009) Aerobic microbial activity in fresh and aged bottom ashes from municipal waste incineration. Int Biodeterior Biodegrad 63:739–746CrossRefGoogle Scholar
  110. 110.
    Aberg A, Kumpiene J, Ecke H (2006) Evaluation and prediction of emissions from a road built with bottom ash from municipal solid waste incinerator (MSWI). Sci Total Environ 355:1–12CrossRefGoogle Scholar
  111. 111.
    van der Sloot HA (2000) Comparison of the characteristic leaching behavior of cements using standard EN-196-1 cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling. Cem Concr Res 30:1079–1096CrossRefGoogle Scholar
  112. 112.
    Serclérat J, Moskowicz P, Pollet B (2000) Retention mechanisms in mortars of trace metals contained in cement clinkers. Waste Manag 20:259–264CrossRefGoogle Scholar
  113. 113.
    Hunsinger H, Seifert H, Jay K (2006) An economic process to inhibit PCDD/PCDF formation in MSWI by SO2. Organohalogen Compd 68:151–156Google Scholar
  114. 114.
    Hunsinger H, Seifert H, Jay K (2007) Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle. Environ Eng Sci 24:1145–1159CrossRefGoogle Scholar
  115. 115.
    Hunsinger H, Seifert H, Jay K (2007) Control of PCDD/F formation under conditions of fluctuating combustion performance in MSWI. Organohalogen Compd 69:956–961Google Scholar
  116. 116.
    Ke S, Ianhua Y, Xiaodong L, Shenyong L, Yinglei W, Muxing F (2010) Inhibition of de novo synthesis of PCDD/Fs by SO 2 in a model system. Chemosphere.  https://doi.org/10.1016/j.chemosphere.2009.12.043
  117. 117.
    Mast P (1999) Einfluss der Abfallzusammensetzung auf Schadstofgehalt und- Menge der Verbrennuingsrückstaände (Impact of waste composition on the concentration and amount of toxins in combustion residues). TAUW, BerlinGoogle Scholar
  118. 118.
    Jeong SM, Osako N, Kim Y (2005) Utilizing a database to interpret leaching characteristics of lead from bottom ashes of municipal waste incinerators. Waste Manag 23:694–701CrossRefGoogle Scholar
  119. 119.
    Lo S, Tsao Y (1997) Economic analysis of waste minimization for electroplating plants. Water Sci Technol 36:383–390CrossRefGoogle Scholar
  120. 120.
    Fujimori T, Takaoka M, Takea N (2009) Influence of Cu, Fe, Pb and Zn chlorides and oxides on formation of chlorinated aromatic compounds in MSWI fly ash. Environ Sci Technol 43:8053–8059CrossRefGoogle Scholar
  121. 121.
    Funari V, Bokhari SNH, Vigliotti L, Meisel T, Braga R (2016) The rare earth elements in municipal solid waste incinerators ash and promising tools for their prospecting. J Hazard Mater 301:471–479CrossRefGoogle Scholar
  122. 122.
    Boesch ME, Vandenbo C, Daner D, Huter C, Hellweg S (2014) An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Waste Manag 24:378–389CrossRefGoogle Scholar
  123. 123.
    Purgar A, Winter F, Blasenbauer D, Hartmann S, Fellner J, Lederer J, Rechberger H (2016) Main drivers for integrating zinc recovery from fly ashes into the Viennese waste incineration cluster. Fuel Process Technol 141:243–248CrossRefGoogle Scholar
  124. 124.
    Fellner J, Lederer J, Purgar A, Winterstetter A, Rechberger H, Winter F, Laner D (2015) Evaluation of resource recovery from waste incineration residues –the case of zinc. Waste Manag 37:95–103CrossRefGoogle Scholar
  125. 125.
    Franz M (2008) Phosphate fertilizers from sewage sludge ash (SSA). Waste Manag 28:1809–1818CrossRefGoogle Scholar
  126. 126.
    Adam C, Peplinski B, Michaelis M, Kley G, Simon D (2009) Thermochemical treatment of sewage sludge ashes for phosphorous recovery. Waste Manag 29:1122–1128CrossRefGoogle Scholar
  127. 127.
    Mayer BK, Baker LA, Boyer TH, Drechsel P, Gifford M, Hanjra MA, Parameswaran P, Stoltzfus J, Westerhoff P, Rittmann BE (2016) Total value of phosphorus recovery. Environ Sci Technol 50:6606–6620CrossRefGoogle Scholar
  128. 128.
    Wzorek Z, Jodko M, Gorazda K, Rzepecki T (2006) Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge. J Loss Prev Process Ind 19:39–50CrossRefGoogle Scholar
  129. 129.
    Donatello S, Freeman-Pask A, Tyrer M, Cheeseman CR (2010) Effect of milling and acid washing on the pozzolanic activity of incinerator sewage sludge ash. Cem Concr Compos 32:54–61CrossRefGoogle Scholar
  130. 130.
    Mattenberger H, Fraissler G, Herk P, Hermann L, Obernberger I (2008) Sewage sludge ash to phosphorus fertilizer: variables influencing heavy metal removal during thermochemical treatment. Waste Manag 28:2709–2722CrossRefGoogle Scholar
  131. 131.
    Kirchmann H, Börjesson G, Kätterer T, Cohen Y (2017) From agricultural use of sewage sludge to nutrient extraction: a soil science outlook. Ambio 46:143–154CrossRefGoogle Scholar
  132. 132.
    Christen C (2007) Closing the phosphorus loop. Environ Sci Technol 46:2078CrossRefGoogle Scholar
  133. 133.
    Ottosen LM, Perdersen AJ, Hansen HK, Ribeiro AB (2007) Screening the possibility for removing cadmium and other heavy metals from wastewater sludges and bioashes by an electrodialytic method. Electrochim Acta 52:3420–2426CrossRefGoogle Scholar
  134. 134.
    Kubonova L, Langova S, Nowak B, Winter F (2013) Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash. Waste Manag 33:2322–2327CrossRefGoogle Scholar
  135. 135.
    Funari Y, Mäkinen J, Salminen J, Braga R, Dinelli E, Revitzer H (2017) Metal removal from municipal solid waste incineration fly ash: a comparison between chemical leaching and bioleaching. Waste Manag 60:397–406CrossRefGoogle Scholar
  136. 136.
    Tang J, Petranikova M, Ekberg C, Steenari B (2017) Mixer-settler system for the recovery of copper and zinc from MSWI fly ash leachates: an evaluation of a hydrometallurgical process. J Clean Prod 148:595–605CrossRefGoogle Scholar
  137. 137.
    Erüst C, Akcil A, Gahan CS, Tuncuk A, Deveci H (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88:2115–2132CrossRefGoogle Scholar
  138. 138.
    Zhang F, Yamasaki S, Nazyo M (2001) Application of waste ashes to agricultural land – effect of incineration temperature on chemical characteristics. Sci Total Environ 264:205–214CrossRefGoogle Scholar
  139. 139.
    Lienert J, Larsen TA (2010) High acceptance of urine source separation in seven European countries: a review. Environ Sci Technol 44:556–566CrossRefGoogle Scholar
  140. 140.
    Zhang D, Yamaski S, Kimura K (2001) Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environ Int 27:393–398CrossRefGoogle Scholar
  141. 141.
    Rosen CJ, Bierman PM, Olson D (1994) Swiss chard and alfalfa responses in soils amended with municipal waste incinerator ash: growth and elemental composition. J Agric Food Chem 42:1361–1368CrossRefGoogle Scholar
  142. 142.
    Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 93:201–216CrossRefGoogle Scholar
  143. 143.
    Pasquini MW (2006) The use of town refuse ash in urban agriculture around Jos, Nigeria: health and environmental risks. Sci Total Environ 354:43–59CrossRefGoogle Scholar
  144. 144.
    Passquini MW, Alexander MJ (2004) Chemical properties of urban waste ash produced by open burning on the Jos Plateau: implications for agriculture. Sci Total Environ 319:325–340CrossRefGoogle Scholar
  145. 145.
    Hwa TJ, Joyseelan S (1977) Conditioning of oily sludges with municipal solid wastes incineration fly ash. Water Sci Technol 35:231–238Google Scholar
  146. 146.
    Yue Q, Han S, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The performance of biological anaerobic filters packed with sludge-fly ash ceramic particles (SPCP) and commercial ceramic particles (CCP) Turing the restart period. Effect of the C/N ratios and filter media. Bioresour Technol 100:5016–5020CrossRefGoogle Scholar
  147. 147.
    Han S, Yue Q, Yue M, Gao B, Li Q, Yu H, Zhao Y, Qi Y (2009) The characteristics and application of sludge-fly ash ceramic particles (SCP) as novel filter media. J Hazard Mater 171:809–814CrossRefGoogle Scholar
  148. 148.
    Pan S, Lin C, Tseng D (2003) Reusing sewage sludge as absorbent for copper removal from wastewater. Resour Conserv Recycl 39:79–90CrossRefGoogle Scholar
  149. 149.
    Bouzid J, Elouear Z, Ksibi M, Feki M, Montiel A (2008) A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. J Hazard Mater 152:838–845CrossRefGoogle Scholar
  150. 150.
    Okada K, OnoY KY, Nakajima A, MacKenzie KJD (2007) Simultaneous uptake of ammonium and phosphate ions by compounds prepared from paper sludge ash. J Hazard Mater 141:622–629CrossRefGoogle Scholar
  151. 151.
    Wajama T, Haga M, Kuzawa K, Ishimoto H, Tamada O, Ito K, Nishiyama T, Downs RT, Rakovan JF (2006) Zeolite synthesis from paper sludge ash at low temperature (90o C) with addition of diatiomite. J Hazard Mater B 132:244–252CrossRefGoogle Scholar
  152. 152.
    Yang GCC, Yang T (1998) Synthesis of zeolites from municipal incinerator fly ash. J Hazard Mater 62:75–89CrossRefGoogle Scholar
  153. 153.
    Shim Y, Kim Y, Kong S, Rhee S, Lee W (2003) The adsorption characteristics of heavy metals by various particle sizes of MSWI bottom ash. Waste Manag 23:851–857CrossRefGoogle Scholar
  154. 154.
    Jin J, Chi L, Yan J (2010) Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate: a case study on Cu(II) removal. Water Air Soil Pollut.  https://doi.org/10.1007/s 11270-009-0207-5
  155. 155.
    Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci.  https://doi.org/10.1016/j.pecs.2009.11.003
  156. 156.
    Smith KM, Fowler GD, Pulket S, Graham NJD (2009) Sewage sludge-based adsorbents: a review of their production, properties and use in water treatment applications. Water Res 43:2569–2594CrossRefGoogle Scholar
  157. 157.
    Baciocchi R, Polettini A, Pomi R, Prigiobbe V, von Zedwitz VN, Steinfeld A (2006) Sequestration by direct gas-solid carbonation of air pollution control (APC) residues. Energy Fuel 20:1933–1940CrossRefGoogle Scholar
  158. 158.
    Pertl A, Mostbauer P, Obersteiner G (2010) Climate balance of biogas upgrading systems. Waste Manag 30:92–99CrossRefGoogle Scholar
  159. 159.
    Ducom G, Radu-Tirnoveanu D, Pascual C, Benadda B, Germain P (2009) Biogas- municipal solid waste incinerator bottom ash interactions: sulphur compounds removal. J Hazard Mater 166:1102–1108CrossRefGoogle Scholar
  160. 160.
    Wang S, Wu H (2006) Environmental-benign utilization of fly ash as low-cost adsorbents. J Hazard Mater B 136:482–501CrossRefGoogle Scholar
  161. 161.
    Karatza D, Lancia A, Musmarra D (1998) Fly ash capture of mercuric chloride vapors from exhaust combustion ash. Environ Sci Technol 32:3999–4004CrossRefGoogle Scholar
  162. 162.
    Reijnders L, Huijbregts MAJ (2009) Biofuels for road transport. Springer, LondonGoogle Scholar
  163. 163.
    Capello C, Hellweg S, Hungerbühler K (2008) Environmental assessment of waste-solvent treatment options. J Ind Ecol 12:111–127CrossRefGoogle Scholar
  164. 164.
    Björklund A, Finnveden G (2005) Recycling revisited – life cycle comparisons of global warming impact and total energy use of waste management strategies. Resour Conserv Recycl 44:309–317CrossRefGoogle Scholar
  165. 165.
    Luteijn J (2009) No energy to waste. Thesis, Open University of the Netherlands, HeerlenGoogle Scholar
  166. 166.
    Allegrini E, Vandenbo C, Boldrin A, Astrup TF (2015) Life cycle assessment of resource recovery from municipal solid waste incineration bottom ash. Waste Manag 34:1627–1636CrossRefGoogle Scholar
  167. 167.
    Kleemann R, Chenoweth J, Clift R, Morse S, Pearce P, Saroj D (2017) Comparison of phosphorus recovery from incinerated sewage sludge ash (ISSA) and pyrolysis sewage sludge char (PSSC). Waste Manag 60:201–210CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.IBEDUniversity of AmsterdamAmsterdamThe Netherlands

Section editors and affiliations

  • Mervin Fingas
    • 1
  1. 1.Spill ScienceEdmontonCanada