Skip to main content

Airborne Nanoparticles: Control and Detection

  • Living reference work entry
  • First Online:
Encyclopedia of Sustainability Science and Technology

Glossary

Air pollution:

“is the presence in the outdoor atmosphere of any one or more substances in quantities which are or may be harmful or injurious to human health or welfare, animal or plant life or property or unreasonably interfere with the enjoyment of life or property, outdoor recreation” [1].

Aerosol:

is a solid or liquid particle suspended in a gas. Such particles may be produced directly, for example, from combustion or indirectly from gas-to-particle conversion. The former is primary aerosol and the latter secondary aerosol [2]. There are multiple processing mechanisms in the atmospheric including exchange with the gas phase and coagulation.

Nanoparticle:

is a size category of aerosol particles with diameter between 1 and 100 nm [2].

Anthropogenic emissions:

include man-made pollution from activities such as transportation, cooking and heating, industry, and energy production, involving combustion of fossil fuel and biomass. Human activities can be the main primary source...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  1. Cooper CD, Alley FC (2010) Air pollution control: a design approach. Waveland Press, Long Grove Illinois, USA

    Google Scholar 

  2. Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New York

    Google Scholar 

  3. Biswas P, Wu C-Y (2005) Nanoparticles and the environment. J Air Waste Manage Assoc 55(6):708–746

    CAS  Google Scholar 

  4. Mao X, Bai Y, Yu J, Ding B (2016) Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. J Am Ceram Soc 99(8):2760–2768

    CAS  Google Scholar 

  5. Kulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications. Wiley, Hoboken

    Google Scholar 

  6. Liu J-Y, Hsiao T-C, Lee K-Y, Chuang H-C, Cheng T-J, Chuang K-J (2018) Association of ultrafine particles with cardiopulmonary health among adult subjects in the urban areas of northern Taiwan. Sci Total Environ 627:211–215

    CAS  Google Scholar 

  7. Chen R, Hu B, Liu Y, Xu J, Yang G, Xu D, Chen C (2016) Beyond PM2. 5: the role of ultrafine particles on adverse health effects of air pollution. Biochimica et Biophysica Acta (BBA)-General Subjects 1860(12):2844–2855

    CAS  Google Scholar 

  8. Stafoggia M, Schneider A, Cyrys J, Samoli E, Andersen ZJ, Bedada GB, Bellander T, Cattani G, Eleftheriadis K, Faustini A (2017) Association between short-term exposure to ultrafine particles and mortality in eight European urban areas. Epidemiology 28(2):172–180

    Google Scholar 

  9. Tobías A, Rivas I, Reche C, Alastuey A, Rodríguez S, Fernández-Camacho R, de la Campa AMS, de la Rosa J, Sunyer J, Querol X (2018) Short-term effects of ultrafine particles on daily mortality by primary vehicle exhaust versus secondary origin in three Spanish cities. Environ Int 111:144–151

    Google Scholar 

  10. Heinzerling A, Hsu J, Yip F (2016) Respiratory health effects of ultrafine particles in children: a literature review. Water Air Soil Pollut 227(1):32

    Google Scholar 

  11. Samet JM, Graff D, Berntsen J, Ghio AJ, Huang Y-CT, Devlin RB (2007) A comparison of studies on the effects of controlled exposure to fine, coarse and ultrafine ambient particulate matter from a single location. Inhal Toxicol 19(sup1):29–32

    CAS  Google Scholar 

  12. Liu Q, Liu D, Chen X, Zhang Q, Jiang J, Chen D-R (2019) A cost-effective, miniature electrical ultrafine particle sizer (mini-eUPS) for ultrafine particle (UFP) monitoring network. Aerosol Air Qual Res (AAQR) 23:24

    Google Scholar 

  13. Du Y, Xu X, Chu M, Guo Y, Wang J (2016) Air particulate matter and cardiovascular disease: the epidemiological, biomedical and clinical evidence. J Thorac Dis 8(1):E8

    Google Scholar 

  14. Li Y, Chen Q, Zhao H, Wang L, Tao R (2015) Variations in PM10, PM2. 5 and PM1. 0 in an urban area of the Sichuan Basin and their relation to meteorological factors. Atmosphere 6(1):150–163

    Google Scholar 

  15. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    Google Scholar 

  16. Dhananjayan V, Ravichandran B, Sen S, Panjakumar K (2019) Source, effect, and risk assessment of nanoparticles with special reference to occupational exposure. In: Nanoarchitectonics in biomedicine. William Andrew Publishing, Norwich NY, USA, pp 643–676

    Google Scholar 

  17. Knudsen KB, Northeved H, Ek PK, Permin A, Andresen TL, Larsen S, Wegener KM, Lam HR, Lykkesfeldt J (2014) Differential toxicological response to positively and negatively charged nanoparticles in the rat brain. Nanotoxicology 8(7):764–774

    CAS  Google Scholar 

  18. Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, Wang M, Oberley T, Froines J, Nel A (2003) Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect 111(4):455–460

    CAS  Google Scholar 

  19. Manigrasso M, Vernale C, Avino P (2017) Traffic aerosol lobar doses deposited in the human respiratory system. Environ Sci Pollut Res 24(16):13866–13873

    Google Scholar 

  20. Pekkanen J, Timonen KL, Ruuskanen J, Reponen A, Mirme A (1997) Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms. Environ Res 74(1):24–33

    CAS  Google Scholar 

  21. Tiittanen P, Timonen K, Ruuskanen J, Mirme A, Pekkanen J (1999) Fine particulate air pollution, resuspended road dust and respiratory health among symptomatic children. Eur Respir J 13(2):266–273

    CAS  Google Scholar 

  22. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 175(3):191–199

    CAS  Google Scholar 

  23. Agranovski I (2011) Aerosols: science and technology. Wiley, Weinheim

    Google Scholar 

  24. Hinds WC (2012) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Los Angeles

    Google Scholar 

  25. Ardkapan SR, Johnson MS, Yazdi S, Afshari A, Bergsøe NC (2014) Filtration efficiency of an electrostatic fibrous filter: studying filtration dependency on ultrafine particle exposure and composition. J Aerosol Sci 72:14–20

    CAS  Google Scholar 

  26. Zhang R, Wei F (2019) High-efficiency particulate air filters based on carbon nanotubes. In: Nanotube superfiber materials. William Andrew Publishing, Norwich NY, USA, pp 643–666

    Google Scholar 

  27. Viswanathan G, Kane DB, Lipowicz PJ (2004) High efficiency fine particulate filtration using carbon nanotube coatings. Adv Mater 16(22):2045–2049

    CAS  Google Scholar 

  28. Chen CY (1955) Filtration of aerosols by fibrous media. Chem Rev 55(3):595–623

    CAS  Google Scholar 

  29. Zhang S, Rind NA, Tang N, Liu H, Yin X, Yu J, Ding B (2019) Electrospun nanofibers for air filtration. In: Electrospinning: nanofabrication and applications. William Andrew Publishing, Norwich NY, USA, pp 365–389

    Google Scholar 

  30. Wang C-S, Otani Y (2012) Removal of nanoparticles from gas streams by fibrous filters: a review. Ind Eng Chem Res 52(1):5–17

    Google Scholar 

  31. Sambaer W, Zatloukal M, Kimmer D (2011) 3D modeling of filtration process via polyurethane nanofiber based nonwoven filters prepared by electrospinning process. Chem Eng Sci 66(4):613–623

    CAS  Google Scholar 

  32. Gibson P, Schreuder-Gibson H, Rivin D (2001) Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf Physicochem Eng Aspects 187:469–481

    Google Scholar 

  33. Kadam VV, Wang L, Padhye R (2018) Electrospun nanofibre materials to filter air pollutants–a review. J Ind Text 47(8):2253–2280

    CAS  Google Scholar 

  34. Liu Q, Zhu J, Zhang L, Qiu Y (2018) Recent advances in energy materials by electrospinning. Renew Sust Energ Rev 81:1825–1858

    CAS  Google Scholar 

  35. Leung WW-F, Hung C-H, Yuen P-T (2010) Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Sep Purif Technol 71(1):30–37

    CAS  Google Scholar 

  36. Zhang S, Liu H, Zuo F, Yin X, Yu J, Ding B (2017) A controlled design of ripple-like polyamide-6 nanofiber/nets membrane for high-efficiency air filter. Small 13(10):1603151

    Google Scholar 

  37. Wan H, Wang N, Yang J, Si Y, Chen K, Ding B, Sun G, El-Newehy M, Al-Deyab SS, Yu J (2014) Hierarchically structured polysulfone/titania fibrous membranes with enhanced air filtration performance. J Colloid Interface Sci 417:18–26

    CAS  Google Scholar 

  38. Choi H-J, Kumita M, Hayashi S, Yuasa H, Kamiyama M, Seto T, Tsai C-J, Otani Y (2017) Filtration properties of nanofiber/microfiber mixed filter and prediction of its performance. Aerosol Air Qual Res 17:1052–1062

    CAS  Google Scholar 

  39. Tonin C, Aluigi A, Varesano A, Vineis C (2010) Keratin-based nanofibres. InTechOpen, London, UK, https://doi.org/10.5772/8151, pp 139–158

  40. Grafe TH, Graham KM (2003) Nanofiber webs from electrospinning. In: Nonwovens in filtration-fifth international conference, Stuttgart, 2003, pp 1–5

    Google Scholar 

  41. Morozov VN, Mikheev AY (2012) Water-soluble polyvinylpyrrolidone nanofilters manufactured by electrospray-neutralization technique. J Membr Sci 403:110–120

    Google Scholar 

  42. Liu Y, Park M, Ding B, Kim J, El-Newehy M, Al-Deyab SS, Kim H-Y (2015) Facile electrospun polyacrylonitrile/poly (acrylic acid) nanofibrous membranes for high efficiency particulate air filtration. Fiber Polym 16(3):629–633

    CAS  Google Scholar 

  43. Wang Z, Zhao C, Pan Z (2015) Porous bead-on-string poly (lactic acid) fibrous membranes for air filtration. J Colloid Interface Sci 441:121–129

    CAS  Google Scholar 

  44. Li X, Kong H, He J (2015) Study on highly filtration efficiency of electrospun polyvinyl alcohol micro-porous webs. Indian J Phys 89(2):175–179

    CAS  Google Scholar 

  45. Wang N, Zhu Z, Sheng J, Al-Deyab SS, Yu J, Ding B (2014) Superamphiphobic nanofibrous membranes for effective filtration of fine particles. J Colloid Interface Sci 428:41–48

    CAS  Google Scholar 

  46. Zhang S, Liu H, Yu J, Luo W, Ding B (2016) Microwave structured polyamide-6 nanofiber/net membrane with embedded poly (m-phenylene isophthalamide) staple fibers for effective ultrafine particle filtration. J Mater Chem A 4(16):6149–6157

    CAS  Google Scholar 

  47. Li P, Wang C, Zhang Y, Wei F (2014) Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small 10(22):4543–4561

    CAS  Google Scholar 

  48. Wang H, Zheng G-F, Wang X, Sun D-H (2010) Study on the air filtration performance of nanofibrous membranes compared with conventional fibrous filters. In: 2010 IEEE 5th international conference on nano/micro engineered and molecular systems, 2010. IEEE, pp 387–390

    Google Scholar 

  49. Kim K, Lee C, Kim IW, Kim J (2009) Performance modification of a melt-blown filter medium via an additional nano-web layer prepared by electrospinning. Fiber Polym 10(1):60–64

    CAS  Google Scholar 

  50. Wang S-X, Yap CC, He J, Chen C, Wong SY, Li X (2016) Electrospinning: a facile technique for fabricating functional nanofibers for environmental applications. Nanotechnol Rev 5(1):51–73

    Google Scholar 

  51. Zhang Q, Welch J, Park H, Wu C-Y, Sigmund W, Marijnissen JC (2010) Improvement in nanofiber filtration by multiple thin layers of nanofiber mats. J Aerosol Sci 41(2):230–236

    Google Scholar 

  52. Yun KM, Hogan CJ Jr, Matsubayashi Y, Kawabe M, Iskandar F, Okuyama K (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759

    CAS  Google Scholar 

  53. Hung C-H, Leung WW-F (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42

    CAS  Google Scholar 

  54. Wang S, Zhao X, Yin X, Yu J, Ding B (2016) Electret polyvinylidene fluoride nanofibers hybridized by polytetrafluoroethylene nanoparticles for high-efficiency air filtration. ACS Appl Mater Interfaces 8(36):23985–23994

    CAS  Google Scholar 

  55. Bortolassi ACC, Nagarajan S, de Araújo Lima B, Guerra VG, Aguiar ML, Huon V, Soussan L, Cornu D, Miele P, Bechelany M (2019) Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Mater Sci Eng C 102:718–729

    CAS  Google Scholar 

  56. Liu C, Hsu P-C, Lee H-W, Ye M, Zheng G, Liu N, Li W, Cui Y (2015) Transparent air filter for high-efficiency PM 2.5 capture. Nat Commun 6:6205

    CAS  Google Scholar 

  57. Vitchuli N, Shi Q, Nowak J, McCord M, Bourham M, Zhang X (2010) Electrospun ultrathin nylon fibers for protective applications. J Appl Polym Sci 116(4):2181–2187

    CAS  Google Scholar 

  58. Kuo Y-Y, Bruno FC, Wang J (2014) Filtration performance against nanoparticles by electrospun nylon-6 media containing ultrathin nanofibers. Aerosol Sci Technol 48(12):1332–1344

    CAS  Google Scholar 

  59. Wang N, Yang Y, Al-Deyab SS, El-Newehy M, Yu J, Ding B (2015) Ultra-light 3D nanofibre-nets binary structured nylon 6–polyacrylonitrile membranes for efficient filtration of fine particulate matter. J Mater Chem A 3(47):23946–23954

    CAS  Google Scholar 

  60. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56

    CAS  Google Scholar 

  61. Nasibulin AG, Kaskela A, Mustonen K, Anisimov AS, Ruiz V, Kivisto S, Rackauskas S, Timmermans MY, Pudas M, Aitchison B (2011) Multifunctional free-standing single-walled carbon nanotube films. ACS Nano 5(4):3214–3221

    CAS  Google Scholar 

  62. Yildiz O, Bradford PD (2013) Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 64:295–304

    CAS  Google Scholar 

  63. Li P, Zong Y, Zhang Y, Yang M, Zhang R, Li S, Wei F (2013) In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Nanoscale 5(8):3367–3372

    CAS  Google Scholar 

  64. Zhao Y, Low Z-X, Feng S, Zhong Z, Wang Y, Yao Z (2017) Multifunctional hybrid porous filters with hierarchical structures for simultaneous removal of indoor VOCs, dusts and microorganisms. Nanoscale 9(17):5433–5444

    CAS  Google Scholar 

  65. Yang S, Zhu Z, Wei F, Yang X (2017) Carbon nanotubes/activated carbon fiber based air filter media for simultaneous removal of particulate matter and ozone. Build Environ 125:60–66

    Google Scholar 

  66. Park JH, Yoon KY, Na H, Kim YS, Hwang J, Kim J, Yoon YH (2011) Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci Total Environ 409(19):4132–4138

    CAS  Google Scholar 

  67. Karwa AN, Tatarchuk BJ (2012) Aerosol filtration enhancement using carbon nanostructures synthesized within a sintered nickel microfibrous matrix. Sep Purif Technol 87:84–94

    CAS  Google Scholar 

  68. Li P, Wang C, Li Z, Zong Y, Zhang Y, Yang X, Li S, Wei F (2014) Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Adv 4(96):54115–54121

    CAS  Google Scholar 

  69. Wang C, Li P, Zong Y, Zhang Y, Li S, Wei F (2014) A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon 79:424–431

    CAS  Google Scholar 

  70. Schnelle KB Jr, Dunn RF, Ternes ME (2015) Air pollution control technology handbook. CRC press, Boca Raton

    Google Scholar 

  71. Colls J, Tiwary A (2017) Air pollution: measurement, modelling and mitigation. CRC Press, London/New York

    Google Scholar 

  72. Zhuang Y, Kim YJ, Lee TG, Biswas P (2000) Experimental and theoretical studies of ultra-fine particle behavior in electrostatic precipitators. J Electrost 48(3–4):245–260

    CAS  Google Scholar 

  73. Kim J-H, Lee H-S, Kim H-H, Ogata A (2010) Electrospray with electrostatic precipitator enhances fine particles collection efficiency. J Electrost 68(4):305–310

    CAS  Google Scholar 

  74. Dey L, Venkataraman C (2012) A wet electrostatic precipitator (WESP) for soft nanoparticle collection. Aerosol Sci Technol 46(7):750–759

    CAS  Google Scholar 

  75. Chen T-M, Tsai C-J, Yan S-Y, Li S-N (2014) An efficient wet electrostatic precipitator for removing nanoparticles, submicron and micron-sized particles. Sep Purif Technol 136:27–35

    CAS  Google Scholar 

  76. Huang S-H, Chen C-C (2003) Loading characteristics of a miniature wire-plate electrostatic precipitator. Aerosol Sci Technol 37(2):109–121

    CAS  Google Scholar 

  77. Jaworek A, Czech T, Rajch E, Lackowski M (2006) Laboratory studies of back-discharge in fly ash. J Electrost 64(5):326–337

    CAS  Google Scholar 

  78. Li Z, Liu Y, Xing Y, Tran T-M-P, Le T-C, Tsai C-J (2015) Novel wire-on-plate electrostatic precipitator (WOP-EP) for controlling fine particle and nanoparticle pollution. Environ Sci Technol 49(14):8683–8690

    CAS  Google Scholar 

  79. de Oliveira AE, Guerra VG (2018) Influence of particle concentration and residence time on the efficiency of nanoparticulate collection by electrostatic precipitation. J Electrost 96:1–9

    Google Scholar 

  80. de Oliveira AE, Guerra VG (2019) Effect of low gas velocity on the nanoparticle collection performance of an electrostatic precipitator. Sep Sci Technol 54(7):1211–1220

    Google Scholar 

  81. Naito M, Yokoyama T, Hosokawa K, Nogi K (2018) Nanoparticle technology handbook. Elsevier, Amsterdam

    Google Scholar 

  82. Boddu S, Gutti V, Meyer R, Ghosh T, Tompson R, Loyalka S (2011) Carbon nanoparticle generation, collection, and characterization using a spark generator and a thermophoretic deposition cell. Nucl Technol 173(3):318–326

    CAS  Google Scholar 

  83. Brown DP, Biswas P, Rubin SG (1994) Transport and deposition of particles in gas turbines: effects of convection, diffusion, thermophoresis, inertial impaction and coagulation. American Society of Mechanical Engineers, New York

    Google Scholar 

  84. Tsai C-J, Lin J-S, Aggarwal SG, Chen D-R (2004) Thermophoretic deposition of particles in laminar and turbulent tube flows. Aerosol Sci Technol 38(2):131–139

    CAS  Google Scholar 

  85. Tsai C-J, Lu H-C (1995) Design and evaluation of a plate-to-plate thermophoretic precipitator. Aerosol Sci Technol 22(2):172–180

    CAS  Google Scholar 

  86. Gonzalez D, Nasibulin AG, Baklanov AM, Shandakov SD, Brown DP, Queipo P, Kauppinen EI (2005) A new thermophoretic precipitator for collection of nanometer-sized aerosol particles. Aerosol Sci Technol 39(11):1064–1071

    CAS  Google Scholar 

  87. Ladino L, Stetzer O, Hattendorf B, Günther D, Croft B, Lohmann U (2011) Experimental study of collection efficiencies between submicron aerosols and cloud droplets. J Atmos Sci 68(9):1853–1864

    Google Scholar 

  88. Sparks LE, Pilat MJ (1970) Effect of diffusiophoresis on particle collection by wet scrubbers. Atmos Environ (1967) 4(6):651–660

    Google Scholar 

  89. Katoshevski D, Dodin Z, Ziskind G (2005) Aerosol clustering in oscillating flows: mathematical analysis. Atomization Sprays 15(4):401–412

    Google Scholar 

  90. Ruzal-Mendelevich M, Katoshevski D, Sher E (2016) Controlling nanoparticles emission with particle-grouping exhaust-pipe. Fuel 166:116–123

    CAS  Google Scholar 

  91. Zhao B, Li M, Wang L-Y, Katoshevski D, Chung T-S (2018) Particle grouping and agglomeration assisted by damper oscillation systems. Sep Purif Technol 207:12–19

    CAS  Google Scholar 

  92. Hoffmann TL, Koopmann GH (1996) Visualization of acoustic particle interaction and agglomeration: theory and experiments. J Acoust Soc Am 99(4):2130–2141

    Google Scholar 

  93. Noorpoor A, Sadighzadeh A, Habibnejad H (2013) Influence of acoustic waves on deposition and coagulation of fine particles. Int J Environ Res 7(1):131–138

    Google Scholar 

  94. Yuen W, Fu S, Kwan JK, Chao CY (2014) The use of nonlinear acoustics as an energy-efficient technique for aerosol removal. Aerosol Sci Technol 48(9):907–915

    CAS  Google Scholar 

  95. Zu K, Yao Y, Cai M, Zhao F, Cheng D (2017) Modeling and experimental study on acoustic agglomeration for dust particle removal. J Aerosol Sci 114:62–76

    CAS  Google Scholar 

  96. Cheng M, Lee P, Berner A, Shaw D (1983) Orthokinetic agglomeration in an intense acoustic field. J Colloid Interface Sci 91(1):176–187

    CAS  Google Scholar 

  97. Vu TV, Delgado-Saborit JM, Harrison RM (2015) Particle number size distributions from seven major sources and implications for source apportionment studies. Atmos Environ 122:114–132

    CAS  Google Scholar 

  98. Stanier CO, Khlystov AY, Pandis SN (2004) Ambient aerosol size distributions and number concentrations measured during the Pittsburgh Air Quality Study (PAQS). Atmos Environ 38(20):3275–3284

    CAS  Google Scholar 

  99. Woo K, Chen D, Pui D, McMurry P (2001) Measurement of Atlanta aerosol size distributions: observations of ultrafine particle events. Aerosol Sci Technol 34(1):75–87

    CAS  Google Scholar 

  100. von Bismarck-Osten C, Birmili W, Ketzel M, Massling A, Petäjä T, Weber S (2013) Characterization of parameters influencing the spatio-temporal variability of urban particle number size distributions in four European cities. Atmos Environ 77:415–429

    Google Scholar 

  101. Rawat VK, Buckley DT, Kimoto S, Lee M-H, Fukushima N, Hogan CJ Jr (2016) Two dimensional size–mass distribution function inversion from differential mobility analyzer–aerosol particle mass analyzer (DMA–APM) measurements. J Aerosol Sci 92:70–82

    CAS  Google Scholar 

  102. Fomin A, Poliak M, Rahinov I, Tsionsky V, Cheskis S (2013) Combined particle mass spectrometer–quartz crystal microbalance apparatus for in situ nanoparticle monitoring during flame assisted synthesis. Combust Flame 160(10):2131–2140

    CAS  Google Scholar 

  103. Marple V, Olson B, Romay F, Hudak G, Geerts SM, Lundgren D (2014) Second generation micro-orifice uniform deposit impactor, 120 MOUDI-II: design, evaluation, and application to long-term ambient sampling. Aerosol Sci Technol 48(4):427–433

    CAS  Google Scholar 

  104. Keskinen J, Pietarinen K, Lehtimäki M (1992) Electrical low pressure impactor. J Aerosol Sci 23(4):353–360

    CAS  Google Scholar 

  105. Murphy DM, Froyd KD, Bian H, Brock CA, Dibb JE, DiGangi JP, Diskin G, Dollner M, Kupc A, Scheuer EM (2019) The distribution of sea-salt aerosol in the global troposphere. Atmos Chem Phys 19(6):4093–4104

    CAS  Google Scholar 

  106. Stolzenburg MR, McMurry PH (1991) An ultrafine aerosol condensation nucleus counter. Aerosol Sci Technol 14(1):48–65

    CAS  Google Scholar 

  107. Mirme A, Noppel M, Peil I, Salm J, Tamm E, Tammet H (1984) Multi-channel electric aerosol spectrometer. In: International commission for cloud physics. 11th international conference on atmospheric aerosols, condensation and ICE nuclei, vol 2, pp 155–159 (SEE N85-32596 21-47)

    Google Scholar 

  108. Sioutas C (1999) Evaluation of the measurement performance of the scanning mobility particle sizer and aerodynamic particle sizer. Aerosol Sci Technol 30(1):84–92

    CAS  Google Scholar 

  109. Johnson T (2003) An engine exhaust particle sizer spectrometer for transient emission particle measurements, A117. In: 7th ETH-ETH conference on combusion generated particles

    Google Scholar 

  110. Manigrasso M, Protano C, Martellucci S, Mattei V, Vitali M, Avino P (2019) Evaluation of the submicron particles distribution between mountain and urban site: contribution of the transportation for defining environmental and human health issues. Int J Environ Res Public Health 16(8):1339

    CAS  Google Scholar 

  111. Wang J, Pikridas M, Spielman SR, Pinterich T (2017) A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, part I: design and model evaluation. J Aerosol Sci 108:44–55

    CAS  Google Scholar 

  112. Baquero T, Shukrallah S, Karolia R, Osammor O, Inkson B (2015) Quantification of airborne road-side pollution carbon nanoparticles. J Phys Conf Ser 644(1):012023. IOP Publishing

    Google Scholar 

  113. Dubtsov S, Ovchinnikova T, Valiulin S, Chen X, Manninen HE, Aalto PP, Petäjä T (2017) Laboratory verification of aerosol diffusion spectrometer and the application to ambient measurements of new particle formation. J Aerosol Sci 105:10–23

    CAS  Google Scholar 

  114. Asbach C, Fissan H, Stahlmecke B, Kuhlbusch T, Pui D (2009) Conceptual limitations and extensions of lung-deposited nanoparticle surface area monitor (NSAM). J Nanopart Res 11(1):101–109

    Google Scholar 

  115. Onasch T, Trimborn A, Fortner E, Jayne J, Kok G, Williams L, Davidovits P, Worsnop D (2012) Soot particle aerosol mass spectrometer: development, validation, and initial application. Aerosol Sci Technol 46(7):804–817

    CAS  Google Scholar 

  116. Wang W, Shao L, Guo M, Hou C, Xing J, Wu F (2017) Physicochemical properties of individual airborne particles in Beijing during pollution periods. Aerosol Air Qual Res 17:3209–3219

    CAS  Google Scholar 

  117. Liao B-X, Gong W-C, Li Z, Tsai C-J (2019) A mass correction method for the aerosol particle mass analyzer to measure the particle mass of sub-50 nm nanoparticles. Aerosol Science and Technology 53(9):1056–1066.

    Google Scholar 

  118. Su L, Ou Q, Cao LN, Du Q, Pui DY (2019) A new instrument prototype to measure the geometric surface area of nanoparticles with a time resolution of 1s. J Aerosol Sci 132:32–43

    CAS  Google Scholar 

  119. Scheckman JH, McMurry PH, Pratsinis SE (2009) Rapid characterization of agglomerate aerosols by in situ mass – mobility measurements. Langmuir 25(14):8248–8254

    CAS  Google Scholar 

  120. Olfert J, Collings N (2005) New method for particle mass classification—the Couette centrifugal particle mass analyzer. J Aerosol Sci 36(11):1338–1352

    CAS  Google Scholar 

  121. Johnson TJ, Olfert JS, Cabot R, Treacy C, Yurteri CU, Dickens C, McAughey J, Symonds JP (2015) Transient measurement of the effective particle density of cigarette smoke. J Aerosol Sci 87:63–74

    CAS  Google Scholar 

  122. Liu C-N, Awasthi A, Hung Y-H, Tsai C-J (2013) Collection efficiency and interstage loss of nanoparticles in micro-orifice-based cascade impactors. Atmos Environ 69:325–333

    CAS  Google Scholar 

  123. Tsai C-J, Liu C-N, Hung S-M, Chen S-C, Uang S-N, Cheng Y-S, Zhou Y (2012) Novel active personal nanoparticle sampler for the exposure assessment of nanoparticles in workplaces. Environ Sci Technol 46(8):4546–4552

    CAS  Google Scholar 

  124. Huang C-H, Chang C-S, Chang S-H, Tsai C-J, Shih T-S, Tang D-T (2005) Use of porous foam as the substrate of an impactor for respirable aerosol sampling. J Aerosol Sci 36(11):1373–1386

    CAS  Google Scholar 

  125. Chen S-C, Tsai C-J, Chen H-D, Huang C-Y, Roam G-D (2011) The influence of relative humidity on nanoparticle concentration and particle mass distribution measurements by the MOUDI. Aerosol Sci Technol 45(5):596–603

    CAS  Google Scholar 

  126. Olfert JS, Kulkarni P, Wang J (2008) Measuring aerosol size distributions with the fast integrated mobility spectrometer. J Aerosol Sci 39(11):940–956

    CAS  Google Scholar 

  127. Xu R (2015) Light scattering: a review of particle characterization applications. Particuology 18:11–21

    Google Scholar 

  128. Arakawa A, Mori T, Inoue T (2012) Particle counter. Google Patents

    Google Scholar 

  129. Bauer P, Amenitsch H, Baumgartner B, Köberl G, Rentenberger C, Winkler P (2019) In-situ aerosol nanoparticle characterization by small angle X-ray scattering at ultra-low volume fraction. Nat Commun 10(1):1122

    CAS  Google Scholar 

  130. Wang J, Flagan RC, Seinfeld JH (2002) Diffusional losses in particle sampling systems containing bends and elbows. J Aerosol Sci 33(6):843–857

    CAS  Google Scholar 

  131. Hering SV, McMurry PH (1991) Optical counter response to monodisperse atmospheric aerosols. Atmos Environ Part A 25(2):463–468

    Google Scholar 

  132. Kuang C (2016) Condensation particle counter instrument handbook. DOE ARM Climate Research Facility, Washington, DC

    Google Scholar 

  133. Kuang C, Chen M, McMurry PH, Wang J (2012) Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei. Aerosol Sci Technol 46(3):309–315

    CAS  Google Scholar 

  134. Kangasluoma J, Ahonen L, Attoui M, Vuollekoski H, Kulmala M, Petäjä T (2015) Sub-3 nm particle detection with commercial TSI 3772 and Airmodus A20 fine condensation particle counters. Aerosol Sci Technol 49(8):674–681

    CAS  Google Scholar 

  135. Barmpounis K, Ranjithkumar A, Schmidt-Ott A, Attoui M, Biskos G (2018) Enhancing the detection efficiency of condensation particle counters for sub-2 nm particles. J Aerosol Sci 117:44–53

    CAS  Google Scholar 

  136. Picard D, Attoui M, Sellegri K (2019) B3010: a boosted TSI 3010 condensation particle counter for airborne studies. Atmos Meas Tech 12(4):2531–2543

    CAS  Google Scholar 

  137. Iida K, Stolzenburg MR, McMurry PH (2009) Effect of working fluid on sub-2 nm particle detection with a laminar flow ultrafine condensation particle counter. Aerosol Sci Technol 43(1):81–96

    CAS  Google Scholar 

  138. Knutson E, Whitby K (1975) Aerosol classification by electric mobility: apparatus, theory, and applications. J Aerosol Sci 6(6):443–451

    Google Scholar 

  139. Intra P, Tippayawong N (2008) An overview of differential mobility analyzers for size classification of nanometer-sized aerosol particles. Songklanakarin J Sci Technol 30:243–256

    Google Scholar 

  140. Wang SC, Flagan RC (1990) Scanning electrical mobility spectrometer. Aerosol Sci Technol 13(2):230–240

    CAS  Google Scholar 

  141. Wang Y, Pinterich T, Wang J (2018) Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer. J Aerosol Sci 121:12–20

    CAS  Google Scholar 

  142. Tröstl J, Tritscher T, Bischof OF, Horn H-G, Krinke T, Baltensperger U, Gysel M (2015) Fast and precise measurement in the sub-20 nm size range using a scanning mobility particle sizer. J Aerosol Sci 87:75–87

    Google Scholar 

  143. Johnson T, Caldow R, Pöcher A, Mirme A, Kittelson D (2004) A new electrical mobility particle sizer spectrometer for engine exhaust particle measurements. SAE technical paper

    Google Scholar 

  144. Asbach C, Kaminski H, Fissan H, Monz C, Dahmann D, Mülhopt S, Paur HR, Kiesling HJ, Herrmann F, Voetz M (2009) Comparison of four mobility particle sizers with different time resolution for stationary exposure measurements. J Nanopart Res 11(7):1593

    Google Scholar 

  145. Levin M, Gudmundsson A, Pagels J, Fierz M, Mølhave K, Löndahl J, Jensen K, Koponen I (2015) Limitations in the use of unipolar charging for electrical mobility sizing instruments: a study of the fast mobility particle sizer. Aerosol Sci Technol 49(8):556–565

    CAS  Google Scholar 

  146. Kulkarni P, Wang J (2006) New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution—I: concept and theory. J Aerosol Sci 37(10):1303–1325

    CAS  Google Scholar 

  147. Flagan RC (2004) Opposed migration aerosol classifier (OMAC). Aerosol Sci Technol 38(9):890–899

    CAS  Google Scholar 

  148. Zhang M, Wexler AS (2006) Cross flow ion mobility spectrometry: theory and initial prototype testing. Int J Mass Spectrom 258(1–3):13–20

    CAS  Google Scholar 

  149. Ranjan M, Dhaniyala S (2007) Theory and design of a new miniature electrical-mobility aerosol spectrometer. J Aerosol Sci 38(9):950–963

    CAS  Google Scholar 

  150. Knutson EO (1999) History of diffusion batteries in aerosol measurements. Aerosol Sci Technol 31(2–3):83–128

    CAS  Google Scholar 

  151. Vosburgh DJ, Klein T, Sheehan M, Anthony TR, Peters TM (2013) Design and evaluation of a personal diffusion battery. Aerosol Sci Technol 47(4):435–443

    CAS  Google Scholar 

  152. Onischuk A, Valiulin S, Baklanov A, Moiseenko P, Mitrochenko V (2018) Determination of the aerosol particle size distribution by means of the diffusion battery: analytical inversion. Aerosol Sci Technol 52(8):841–853

    CAS  Google Scholar 

  153. Fierz M, Weimer S, Burtscher H (2009) Design and performance of an optimized electrical diffusion battery. J Aerosol Sci 40(2):152–163

    CAS  Google Scholar 

  154. Burtscher H, Scherrer L, Siegmann H (2001) The electrical diffusion battery for dynamic classification of nanoparticles. In: Proceedings of ETH conference on nanoparticle measurement. BUWAL, Bern

    Google Scholar 

  155. Jimenez JL, Jayne JT, Shi Q, Kolb CE, Worsnop DR, Yourshaw I, Seinfeld JH, Flagan RC, Zhang X, Smith KA (2003) Ambient aerosol sampling using the aerodyne aerosol mass spectrometer. J Geophys Res Atmos 108(D7):8425. https://doi.org/10.1029/2001JD001213

    Google Scholar 

  156. Canagaratna M, Jayne J, Jimenez J, Allan J, Alfarra M, Zhang Q, Onasch T, Drewnick F, Coe H, Middlebrook A (2007) Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom Rev 26(2):185–222

    CAS  Google Scholar 

  157. Su Y, Sipin MF, Furutani H, Prather KA (2004) Development and characterization of an aerosol time-of-flight mass spectrometer with increased detection efficiency. Anal Chem 76(3):712–719

    CAS  Google Scholar 

  158. Goldstein JI, Newbury DE, Michael JR, Ritchie NW, Scott JHJ, Joy DC (2017) Scanning electron microscopy and X-ray microanalysis. Springer, New York

    Google Scholar 

  159. Zhou W, Wang ZL (2007) Scanning microscopy for nanotechnology: techniques and applications. Springer science & business media, New York

    Google Scholar 

  160. Ferrante R, Boccuni F, Tombolini F, Iavicoli S (2019) Measurement techniques of exposure to nanomaterials in workplaces. In: Nanotechnology in eco-efficient construction, 2nd edn. Woodhead Publishing, Sawston, Cambridge, UK, pp 785–813

    Google Scholar 

  161. Gonzalez-Pech NI, Stebounova LV, Ustunol IB, Park JH, Renee Anthony T, Peters TM, Grassian VH (2019) Size, composition, morphology, and health implications of airborne incidental metal-containing nanoparticles. J Occup Environ Hyg 16(6):1–13

    Google Scholar 

  162. Ervik TK, Benker N, Weinbruch S, Thomassen Y, Ellingsen DG, Berlinger B (2019) Size distribution and single particle characterization of airborne particulate matter collected in a silicon carbide plant. Environ Sci Process Impacts 21(3):564–574

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S. Johnson .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rezaei, M., Johnson, M.S. (2020). Airborne Nanoparticles: Control and Detection. In: Meyers, R. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-2493-6_1099-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2493-6_1099-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-2493-6

  • Online ISBN: 978-1-4939-2493-6

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics