Encyclopedia of Sustainability Science and Technology

Living Edition
| Editors: Robert A. Meyers

Industrial Emissions Control Technologies: Introduction

  • Szymon Kwiatkowski
  • Merve Polat
  • Weijia Yu
  • Matthew S. JohnsonEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4939-2493-6_1083-1



Aerosols are suspensions of solid or liquid particles in a gas and occur when mixing from diffusion and circulation is more rapid than gravitational settling. In common usage, “aerosol” can refer to the particulate matter. Atmospheric particulate matter can be emitted directly (“primary aerosol”) or formed in the atmosphere by gas-to-particle conversion processes (“secondary aerosol”). Atmospheric aerosol particles range in size from a few nanometers (nm) to tens of micrometers (μm) in diameter [1].


By-products are formed in emissions control processes due to incomplete mineralization. Ideally, pollution is completely broken down or trapped; often this is not the case.

Contact Time

The contact time t is a crucial metric in characterizing a pollution control system, aiding design and allowing comparison between different systems. It is the ratio between the length of the treatment system l, for example, the contact region of a scrubber, catalyst, or...

This is a preview of subscription content, log in to check access.


  1. 1.
    Seinfeld JH, Pandis SN (2016) Atmospheric chemistry and physics, 3rd edn. Wiley, HobokenGoogle Scholar
  2. 2.
    Vallero DA (2008) Fundamentals of air pollution. Elsevier, Amsterdam/BostonGoogle Scholar
  3. 3.
    Yaws CL, Braker W (2001) Matheson gas data book. Matheson Tri-Gas, Parsippany/New York. [Online].https://openlibrary.org/books/OL3945924M/Matheson_gas_data_book. Accessed 20 June2019
  4. 4.
    CDC – NIOSH Pocket Guide to Chemical Hazards – Formaldehyde. [Online]. https://www.cdc.gov/niosh/npg/npgd0293.html?fbclid=IwAR3OsGj1n8hQ9PviYYWEBKLg_ps_ZBzFzZyLwnI6vw1LCMAoKAzEHpc8di0. Accessed 20 June 2019
  5. 5.
    Buchanan JM, Craig Stubblebine W (1962) The Suntory and Toyota International Centres for Economics and Related Disciplines. Economica 371–384CrossRefGoogle Scholar
  6. 6.
    Simpson BP (2007) An economic, political, and philosophical analysis of externalities. Reason Papers 123–163Google Scholar
  7. 7.
    Harnung SE, Johnson MS (2012) Chemistry and the environment. Cambridge University Press, New YorkCrossRefGoogle Scholar
  8. 8.
    What are the properties of a greenhouse gas?American Chemical Society. [Online]. https://www.acs.org/content/acs/en/climatescience/greenhousegases/properties.html. Accessed 20 June 2019
  9. 9.
    Davis WT, Air & Waste Management Association (2000) Air pollution engineering manual. Wiley, New YorkGoogle Scholar
  10. 10.
    Landes DS (2012) The unbound Prometheus: technological change and industrial development in Western Europe from 1700s to the present, 2nd edn. Cambridge University Press, pp 1–20Google Scholar
  11. 11.
    Markham A (1994) A brief history of pollution. Earthscan, LondonGoogle Scholar
  12. 12.
    Hong S, Candelone JP, Patterson CC, Boutron CF (1994) Greenland ice evidence of hemispheric Lead pollution two millennia ago by Greek and Roman civilizations. Science 265:1841–1843CrossRefGoogle Scholar
  13. 13.
    Hong S, Candelone JP, Soutif M, Boutron CF (1996) A reconstruction of changes in copper production and copper emissions to the atmosphere during the past 7000 years. J Chem Physicshe Sci Total Environ 188:183–193CrossRefGoogle Scholar
  14. 14.
    Clarke CA, Mani GS, Wynne G (Oct. 1985) Evolution in reverse: clean air and the peppered moth. Biol J Linn Soc 26(2):189–199CrossRefGoogle Scholar
  15. 15.
    Lee B-J, Kim B, Lee K (2014) Air pollution exposure and cardiovascular disease. Toxicol Res 30(2):71–75CrossRefGoogle Scholar
  16. 16.
    Zivin JG, Neidell M (2012) The impact of pollution on worker productivity. Am Econ Rev 102(7):3652–3673CrossRefGoogle Scholar
  17. 17.
    Guerreiro C, González Ortiz A, deLeeuw F, et al (2016) Air quality in Europe – 2016 report. [Online]. https://www.eea.europa.eu/publications/air-quality-in-europe-2016/download. Accessed 20 June 2019
  18. 18.
    Guerreiro C, González Ortiz A, deLeeuw F, et al (2018) Air quality in Europe – 2018 report. [Online]. https://www.eea.europa.eu/publications/air-quality-in-europe-2018/download. Accessed 20 June 2019
  19. 19.
    EEA (2018) NEC Directive reporting status 2018. European Environmental Agency. [Online]. https://www.eea.europa.eu/themes/air/national-emission-ceilings/nec-directive-reporting-status-2018. Accessed 20 June 2019
  20. 20.
    Environment – European Commission, “Standards – Air Quality.” [Online]. Available: http://ec.europa.eu/environment/air/quality/standards.htm?fbclid=IwAR2l33HWjOAB-lSqPBD3_U2O09zkmy0S7Or2JrV9BcfdX82h8O5t7U8BqY8. Accessed 22 Mar 2019
  21. 21.
    Zhang Q, Streets DG, He K, Klimont Z (2007) Major components of China’s anthropogenic primary particulate emissions. Environ Res Lett 2(4):045027CrossRefGoogle Scholar
  22. 22.
    WHO, Ambient (outdoor) air quality and health (2018). [Online]. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health. Accessed 08 Feb 2019
  23. 23.
    World Bank (2016) The Cost of Air Pollution strengthening the economic case for action. The World Bank and Institute for Health Metrics and Evaluation. University of Washington, SeattleGoogle Scholar
  24. 24.
    U.S. EPA (2016) Health and environmental effects of particulate matter (PM). US EPA. [Online]. https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm. Accessed 20 June 2019
  25. 25.
    Coakley JA, Bernstein RL, Durkee PA (1987) Effect of ship-stack effluents on cloud reflectivity. Science 237(4818):1020–1022CrossRefGoogle Scholar
  26. 26.
    Occupational Safety and Health Administration OSHA Occupational chemical database. [Online]. Available: https://www.osha.gov/chemicaldata/chemResult.html?RecNo=183&fbclid=IwAR3w0lrVXjG1ULpUVaiW62ZIqtgSNhvWUp5LEcSZ489kIzs-lvSmUWWN6AI. Accessed 22 Mar 2019
  27. 27.
    Olivier JGJ, Schure KM, Peters JAHW (2017) Trends in global CO2 and total greenhouse gas emissions 2017 report trends in global CO2 and total greenhouse gas emissions: 2017 reportGoogle Scholar
  28. 28.
    Carbon Dioxide | Wisconsin Department of Health Services. [Online]. Available: https://www.dhs.wisconsin.gov/chemical/carbondioxide.htm. Accessed 12 Mar 2019
  29. 29.
    Fioletov VE, Mclinden, CA, Krotkov, N, Li, C Lifetimes and emissions of SO2 from point sources estimated from OMIGoogle Scholar
  30. 30.
    U.S. EPA (2018) Report on the environment: sulfur dioxide emissions. United States Environmental Protection Agency. [Online]. https://cfpub.epa.gov/roe/indicator_pdf.cfm?i=22. Accessed 20 June 2019
  31. 31.
    Department of the Environment and Heritage, “Sulfur dioxide (SO2) – Air quality fact sheet” 2005. [Online]. Available: http://www.environment.gov.au/protection/publications/factsheet-sulfur-dioxide-so2. Accessed 08 Feb 2019
  32. 32.
    Liu F, Beirle S, Zhang Q, Dörner S, He K, Wagner T (2016) NO x lifetimes and emissions of cities and power plants in polluted background estimated by satellite observations. Atmos Chem Phys 16:5283–5298CrossRefGoogle Scholar
  33. 33.
    Pinder RW, Gilliland AB, Dennis RL (Jun. 2008) Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys Res Lett 35(12):n/aCrossRefGoogle Scholar
  34. 34.
    CDC – NIOSH Pocket Guide to Chemical Hazards – Ammonia. [Online]. Available: https://www.cdc.gov/niosh/npg/npgd0028.html?fbclid=IwAR0MCQtn7Jf-5yTzf-XvlQcVL3n45RcFjozQ0P_4EB2KwnCyxnJKpPlYDI4. Accessed 22 Mar 2019
  35. 35.
    Behera SN, Sharma M, Aneja VP, Balasubramanian R (2013) Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res 20(11):8092–8131CrossRefGoogle Scholar
  36. 36.
    The Facts About Ammonia [Online]. Available: https://www.health.ny.gov/environmental/emergency/chemical_terrorism/ammonia_tech.htm. Accessed 22 Mar 2019
  37. 37.
    ATSDR – Public Health Statement: Ammonia. [Online]. Available: https://www.atsdr.cdc.gov/phs/phs.asp?id=9&tid=2. Accessed 22 Mar 2019
  38. 38.
  39. 39.
    Chemical hazards compendium. GOV. UK. [Online]. https://www.gov.uk/government/collections/chemical-hazards-compendium. Accessed 20 June 2019
  40. 40.
    AR5 Synthesis Report: Climate Change 2014 – IPCC. [Online]. https://www.ipcc.ch/report/ar5/syr/. Accessed 20 June 2019
  41. 41.
    U.S. EPA(2012) Benzene. United States Environmental Protection Agency. [Online]. https://www.epa.gov/sites/production/files/2016-09/.../benzene.pdf
  42. 42.
    Salthammer T, Mentese S, Marutzky R (2010) Formaldehyde in the indoor environment. Chem Rev 110:2536–2572CrossRefGoogle Scholar
  43. 43.
    Long Term Effects of Volatile Organic Compounds (Benzene, Formaldehyde) [Online]. Available: https://foobot.io/guides/long-term-effects-of-volatile-organic-compounds.php. Accessed 22 Mar 2019
  44. 44.
    World Health Organization (ed) (2000) Air quality guidelines for Europe, 2nd edn. World Health Organization, Regional Office for Europe, CopenhagenGoogle Scholar
  45. 45.
    U.S. EPA(2015) Volatile organic compounds emissions. United States Environmental Protection Agency. [Online]. https://cfpub.epa.gov/roe/indicator_pdf.cfm?i=23. Accessed 20 June 2019
  46. 46.
    World Health Organization Regional Office for Europe (2007) Health risks of heavy metals from long-range transboundary air pollution. WHO Regional Office for Europe, Copenhagen. [Online]. http://www.euro.who.int/__data/assets/pdf_file/0007/78649/E91044.pdf. Accessed 20 June 2019
  47. 47.
    Keeling CD, Piper SC, Bacastow RB, et al (2005) Atmospheric CO2 and 13CO2 exchange with the terrestrial biosphere and oceans from 1978 to 2000: observations and carbon cycle implications. In: Baldwin IT, Caldwell MM, Heldmaier G, et al (eds) A history of atmospheric CO2 and its effects on plants, animals, and ecosystems. Springer New York, New York, pp 83–113Google Scholar
  48. 48.
    D. C. Carbon Brief. (2012). How long do greenhouse gases stay in the air? | Environment | The Guardian. [Online]. Available: https://www.theguardian.com/environment/2012/jan/16/greenhouse-gases-remain-air. Accessed 15 Jan 2019
  49. 49.
    Main sources of carbon dioxide emissions | What’s your impact. [Online]. Available: https://whatsyourimpact.org/greenhouse-gases/carbon-dioxide-emissions. Accessed 08 Feb 2019
  50. 50.
    Department of the Environment and Heritage, Nitrogen dioxide (NO2) – Air quality fact sheet 2005. [Online]. Available: http://www.environment.gov.au/protection/publications/factsheet-nitrogen-dioxide-no2. Accessed 08 Feb 2019
  51. 51.
    Compound Database (2019) National Center for Biotechnology Information. [Online]. https://pubchem.ncbi.nlm.nih.gov/compound/222
  52. 52.
    Gong L, Lewicki R, Griffin RJ, et al (2013) Role of atmospheric ammonia in particulate matter formation in Houston during summertime. Atmos Environ 77:893–900CrossRefGoogle Scholar
  53. 53.
    European Union Network for the Implementation and Enforcement of Environmental Law, Air pollution from agriculture: ammonia exceeds emission limits in 2015 2017 [Online]. Available: https://www.impel.eu/air-pollution-from-agriculture-ammonia-exceeds-emission-limits-in-2015/. Accessed 08 Feb 2019
  54. 54.
    Sun J, Wu F, Hu B, Tang G, Zhang J, Wang Y (2016) VOC characteristics, emissions and contributions to SOA formation during hazy episodes. Atmos Environ 141:560–570CrossRefGoogle Scholar
  55. 55.
    Working Group on Arsenic, Cadmium And Nickel (2000) Compounds ambient air pollution by AS, CD and NI compounds. EU. [Online]. http://ec.europa.eu/environment/archives/air/pdf/pp_as_cd_ni.pdf. Accessed 20 June 2019
  56. 56.
    Li H, Qian X, Geng Wang Q (2013) Heavy metals in atmospheric particulate matter: a comprehensive understanding is needed for monitoring and risk mitigation. Environ SciTechnol 13:28–28Google Scholar
  57. 57.
    Maud J, Rumsby P, Great Britain, Environment Agency (2008) A review of the toxicity of arsenic in air. Environment Agency, BristolGoogle Scholar
  58. 58.
    WHO (2003) Cadmium review. WHO. [Online]. https://www.who.int/ifcs/documents/forums/forum5/nmr_cadmium.pdf. Accessed 20 June 2019
  59. 59.
    Zhang Z, Chau PYK, Lai HK, Wong CM (2009) A review of effects of particulate matter-associated nickel and vanadium species on cardiovascular and respiratory systems. Int J Environ Health Res 19:175–185CrossRefGoogle Scholar
  60. 60.
    Wani AL, Ara A, Usmani JA (Jun. 2015) Lead toxicity: a review. Interdiscip Toxicol 8(2):55–64CrossRefGoogle Scholar
  61. 61.
    Carriazo F (2016) Economics and air pollution. Air quality – measurement and modelingGoogle Scholar
  62. 62.
    Panayotou T (1999) The economics of environments in transition. Environ Dev Econ 4:401–412CrossRefGoogle Scholar
  63. 63.
    Shafik NS (1992) Economic growth and environmental quality: time series and cross-country evidence. The World Bank, Washington, p 1Google Scholar
  64. 64.
    Kosonen K (2012) Regressivity of environmental taxation: myth or reality? EU. [Online]. https://ec.europa.eu/taxation_customs/sites/taxation/files/docs/body/taxation_paper_32_en.pdf. Accessed 20 June 2019
  65. 65.
    Reform of the EU carbon marketGoogle Scholar
  66. 66.
    CO2 European Emission Allowances PRICE Today | CO2 European Emission Allowances Spot Price Chart | Live Price of CO2 European Emission Allowances per Ounce | Markets Insider. [Online]. Available: https://markets.businessinsider.com/commodities/co2-emissionsrechte. Accessed 27 Feb 2019
  67. 67.
    Finus, M Game theory and international environmental co-operation: a survey with an application to the Kyoto-Protocol – FEEM working papers – Publications – Fondazione Eni Enrico Mattei (FEEM).” [Online]. Available: https://www.feem.it/en/publications/feem-working-papers-note-di-lavoro-series/game-theory-and-international-environmental-co-operation-a-survey-with-an-application-to-the-kyoto-protocol/. Accessed 27 Feb 2019
  68. 68.
    Sunstein CR (2006) Montreal versus Kyoto: a tale of two protocols. John M. Olin Program in Law and Economics working paper 302. [Online]. https://chicagounbound.uchicago.edu/journal_articles/8476/. Accessed 20 June 2019
  69. 69.
    Stradling D, Thorsheim P (1999) The smoke of great cities: British and American efforts to control air pollution, 1860–1914. Enviro Hist Durh N C 4:6–31CrossRefGoogle Scholar
  70. 70.
    U.S. EPA (2007) The plain English guide to the clean air act. United States Environmental Protection Agency. [Online]. https://www.epa.gov/sites/production/files/2015-08/documents/peg.pdf. Accessed 20 June 2019
  71. 71.
    Hinds WC (1999) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, New YorkGoogle Scholar
  72. 72.
    Bittermann HH (1997) Carbin air filtration. Charlotte, North Carolina. [Online]. https://fiatec.com/fileadmin/user_upload/downloads/CabinAirFiltration2001.pdf. Accessed 20 June 2019
  73. 73.
    Pui DYH, Qi C, Stanley N, Oberdörster G, Maynard A (2008) Recirculating air filtration significantly reduces exposure to airborne nanoparticles. Environ Health Perspect 116(7):863–866CrossRefGoogle Scholar
  74. 74.
    Walsh DC (1996) Recent advances in the understanding of fibrous filter behaviour under solid particle load. Filtr Sep 33(6):501–506CrossRefGoogle Scholar
  75. 75.
    Air Pollution Control Technology Fact Sheet EPA-452/F-03-022Google Scholar
  76. 76.
    Air Pollution Control Technology Fact Sheet EPA-CICA Fact Sheet Catalytic Incinerator EPA-452/F-03-018Google Scholar
  77. 77.
    Air Pollution Control Technology Fact Sheet EPA-CICA Fact Sheet Incinerator-Recuperative Type EPA-452/F-03-020Google Scholar
  78. 78.
    Air Pollution Control Technology Fact Sheet EPA-452/F-03-021Google Scholar
  79. 79.
    Skodras G, Kaldis SP, Sofialidis D, Faltsi O, Grammelis P, Sakellaropoulos GP (2006) Particulate removal via electrostatic precipitators—CFD simulation. Fuel Process Technol 87(7):623–631CrossRefGoogle Scholar
  80. 80.
    Védrine J (2018) Fundamentals of heterogeneous catalysis. Elsevier, pp 1–41Google Scholar
  81. 81.
  82. 82.
    Bosch C, Mittasch A (1917) Catalytic production of ammonia. BASF SE. [Online]. https://patents.google.com/patent/US1225755A/en. Accessed 20 June 2019
  83. 83.
    Overview of the Haber-Bosch Process [Online]. Available: https://www.thoughtco.com/overview-of-the-haber-bosch-process-1434563. Accessed 12 Mar 2019
  84. 84.
    Atkins P, Paula JD, Friedmann R (2009) Physical chemistry: quanta, matter and change. Oxford University Press, OxfordGoogle Scholar
  85. 85.
    Jeffrey WLH, Steinfeld L, Francisco JS (1998) Chemical kinetics and dynamics, 2nd edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  86. 86.
    Yue H et al (2018) Low temperature selective catalytic reduction of NOX with NH3 by activated coke loaded with FexCoyCezOm: the enhanced activity, mechanism and kinetics. Fuel 233(January):188–199Google Scholar
  87. 87.
    Eley DD (1949) Mechanisms of hydrogen catalysis. Q Rev ChemSoc 3:209–225CrossRefGoogle Scholar
  88. 88.
    Twigg MV (2007) Progress and future challenges in controlling automotive exhaust gas emissions. Appl Catal B Environ 70(1–4):2–15CrossRefGoogle Scholar
  89. 89.
    Yan Q, Yang R, Zhang Y, Umar A, Huang Z, Wang Q (2016) A comprehensive review on selective catalytic reduction catalysts for NO x emission abatement from municipal solid waste incinerators. Environ Prog Sustain Energy 35(4):1061–1069CrossRefGoogle Scholar
  90. 90.
    Su SH, Feng SY, Zhao YF et al (2011) Comparison of three types of NH3-SCR catalysts. Appl Mech Mater 130–134:418–421Google Scholar
  91. 91.
    Air Pollution Control Technology Fact Sheet EPA-452/F-03-032 [Online]. https://www.epa.gov/sites/production/files/2015-08/documents/peg.pdf. Accessed 20 June 2019
  92. 92.
  93. 93.
    Wiȩckowska J (1995) Catalytic and adsorptive desulphurization of gases. Catal Today 24(4):405–465CrossRefGoogle Scholar
  94. 94.
    Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109(1–3):113–139CrossRefGoogle Scholar
  95. 95.
    Wet and Dry Industrial Scrubbers Differences – Honiron. [Online]. Available: https://www.honiron.com/differences-wet-dry-industrial-scrubbers/. Accessed 08 Mar 2019
  96. 96.
    A steam powered submarine: the Ictíneo – low-tech magazine. [Online]. Available: https://www.lowtechmagazine.com/2008/08/submarines-1.html#. Accessed 08 Mar 2019
  97. 97.
    Wan Z, Zhu M, Chen S, Sperling D (Feb. 2016) Pollution: three steps to a green shipping industry. Nature 530(7590):275–277CrossRefGoogle Scholar
  98. 98.
    Kastner JR, Das KC (2002) Wet scrubber analysis of volatile organic compound removal in the rendering industry. J Air Waste Manage Assoc 52(4):459–469CrossRefGoogle Scholar
  99. 99.
    Kastner JR, Das KC (Oct. 2005) Comparison of chemical wet scrubbers and biofiltration for control of volatile organic compounds using GC/MS techniques and kinetic analysis. J Chem Technol Biotechnol 80(10):1170–1179CrossRefGoogle Scholar
  100. 100.
    Wet scrubber for exhaust gas cleaning [Online]. Available: https://www.crystec.com/ksiwete.htm. Accessed 08 Mar 2019
  101. 101.
    Woodard & Curran, Inc. and Woodard & Curran, Inc. (2006) Treatment of air discharges from industry. Ind Waste Treat Handb, pp 335–361, JanGoogle Scholar
  102. 102.
    Wet scrubber – energy education [Online]. Available: https://energyeducation.ca/encyclopedia/Wet_scrubbe. Accessed 08 Mar 2019
  103. 103.
    Dry scrubber – energy education. [Online]. Available: https://energyeducation.ca/encyclopedia/Dry_scrubber. Accessed 08 Mar 2019
  104. 104.
    Feilberg A, Sommer SG (2013) Ammonia and malodorous gases: sources and abatement technologies. In: Animal manure recycling. Wiley, pp 153–175Google Scholar
  105. 105.
    Srivastava RK, Jozewicz W, Singer C (2001) SO2 scrubbing technologies: a review. Environ Prog 20(4):219–228CrossRefGoogle Scholar
  106. 106.
    Kaminski J (2003) Technologies and costs of SO2-emissions reduction for the energy sector. Appl Energy 75(3–4):165–172CrossRefGoogle Scholar
  107. 107.
    Poullikkas A (2015) Review of design, operating, and financial considerations in flue gas desulfurization systems. Energy Technol Policy 2(1):92–103CrossRefGoogle Scholar
  108. 108.
    Yang H et al (2008) Progress in carbon dioxide separation and capture: a review. J Environ Sci 20(1):14–27CrossRefGoogle Scholar
  109. 109.
    Chapel DG, Mariz CL, Ernest J (1999) Recovery of CO2 from flue gases: commercial trends. [Online]. http://citeseerx.ist.psu.edu/viewdoc/download? Accessed 20 June 2019
  110. 110.
    Khalilpour R, Mumford K, Zhai H et al (2015) Membrane-based carbon capture from flue gas: a review. J Cleaner Prod 103:286–300CrossRefGoogle Scholar
  111. 111.
    EU (2018) A clean planet for all a european strategic long-term vision for a prosperous, modern, competitive and climate neutral economy. [Online]. https://ec.europa.eu/transparency/regdoc/rep/1/2018/EN/COM-2018-773-F1-EN-MAIN-PART-1.PDF?fbclid=IwAR0iQy7n53NioHB5lAymYrFaxswrmve5ZBxlh5TuNYYMxSbg0ELNj7wdZXw. Accessed 20 June 2019
  112. 112.
    Van Groenestijn JW (2001) Bioscrubbers. In: Kennes C, Veiga MC (eds) Bioreactors for waste gas treatment. Springer, Dordrecht, pp 133–162Google Scholar
  113. 113.
    Khan FI, Ghoshal AKr (2000) Removal of volatile organic compounds from polluted air. J Loss Prev Process Ind 13(6):527–545CrossRefGoogle Scholar
  114. 114.
    Ghoshal AK, Manjare SD (2002) Selection of appropriate adsorption technique for recovery of VOCs: an analysis. J Loss Prev Process Ind 15(6):413–421CrossRefGoogle Scholar
  115. 115.
    Liu Y, Feng X, Lawless D (2006) Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. J Membr Sci 271(1–2):114–124CrossRefGoogle Scholar
  116. 116.
    Aaron D, Tsouris C (2005) Separation of CO2 from flue gas: a review. Sep Sci Technol 40(1–3):321–348CrossRefGoogle Scholar
  117. 117.
    Yu CH, Huang CH, Tan CS (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12(5):745–769CrossRefGoogle Scholar
  118. 118.
    Tlili N, Grévillot G, Vallières C (2009) Carbon dioxide capture and recovery by means of TSA and/or VSA. Int J Greenh Gas Control 3(5):519–527CrossRefGoogle Scholar
  119. 119.
    Pezolt DJ, Collick SJ, Johnson HA, Robbins LA (1997) Pressure swing adsorption for VOC recovery at gasoline loading terminals. Environ Prog 16(1):16–19CrossRefGoogle Scholar
  120. 120.
    Cruz-Núñez X, Hernández-Solís JM, Ruiz-Suárez LG (2003) Evaluation of vapor recovery systems efficiency and personal exposure in service stations in Mexico City. Sci Total Environ 309(1–3):59–68CrossRefGoogle Scholar
  121. 121.
    Kimmerle K, Bell CM, Gudernatsch W, Chmiel H (1988) Solvent recovery from air. J Membr Sci 36:477–488CrossRefGoogle Scholar
  122. 122.
    Wang T, Lackner KS, Wright A (2011) Moisture swing sorbent for carbon dioxide capture from ambient air. Environ Sci Technol 45(15):6670–6675CrossRefGoogle Scholar
  123. 123.
    Adnew GA et al (2016) Gas-phase advanced oxidation as an integrated air pollution control technique. AIMS Environ Sci 3(March):141–158CrossRefGoogle Scholar
  124. 124.
    Meusinger C et al (2017) Treatment of reduced Sulphur compounds and SO 2 by gas phase advanced oxidation. Chem Eng J 307:427–434CrossRefGoogle Scholar
  125. 125.
    Johnson MS, Nilsson EJK, Svensson EA, Langer S (2014) Gas-phase advanced oxidation for effective, efficient in situ control of pollution. Environ Sci Technol 48:8768–8776CrossRefGoogle Scholar
  126. 126.
    Meusinger C (2014) Gasphasen-EmissionskontrollefürGießereien.Giesserei-Praxis 4:166–169Google Scholar
  127. 127.
    US EPA (2013) Basics of green chemistry. US EPA. [Online]. https://www.epa.gov/greenchemistry/basics-green-chemistry. Accessed 20 Jun 2019
  128. 128.
    Green chemistry [Online]. Available: http://www.essentialchemicalindustry.org/processes/green-chemistry.html. Accessed 21 Mar 2019
  129. 129.
    Li C-J, Trost BM (2008) Green chemistry for chemical synthesis. Proc Natl Acad Sci U S A 105:13197–13202CrossRefGoogle Scholar
  130. 130.
    E-factor [Online]. Available: https://www.sheldon.nl/roger/efactor.html. Accessed 21 Mar 2019
  131. 131.
    Poliakoff M, Licence P (2007) Green chemistry. Nature 450(7171):810–812CrossRefGoogle Scholar
  132. 132.
    Lelieveld J, Klingmüller K, Pozzer A et al (2019) Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur Heart J 40:1590–1596CrossRefGoogle Scholar
  133. 133.
    American Chemical Society, “Green Chemistry Examples” [Online]. Available: https://www.acs.org/content/acs/en/greenchemistry/what-is-green-chemistry/examples.html. Accessed 22 Mar 2019
  134. 134.
    Geurts J, Bouman J, Overbeek A (2008) New waterborne acrylic binders for zero VOC paints. J Coat Technol Res 5:57–63CrossRefGoogle Scholar
  135. 135.
    U.S. EPA. Plastics: material-specific data. United States Environmental Protection Agency. [Online]. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data. Accessed 8 Mar 2019
  136. 136.
    Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste ManagAssoc 51:809–847CrossRefGoogle Scholar
  137. 137.
    Toda M et al (Nov. 2005) Biodiesel made with sugar catalyst. Nature 438(7065):178–178CrossRefGoogle Scholar
  138. 138.
    Transforming our world: the 2030 Agenda for Sustainable Development. Sustainable Development Knowledge Platform. [Online]. Available: https://sustainabledevelopment.un.org/post2015/transformingourworld. Accessed 24 Mar 2019
  139. 139.
    Kemp KC et al (2013) Environmental applications using graphene composites: water remediation and gas adsorption. Nanoscale 5(8):3149CrossRefGoogle Scholar
  140. 140.
    Zhang S et al (Dec. 2016) Modeling energy efficiency to improve air quality and health effects of China’s cement industry. Appl Energy 184:574–593CrossRefGoogle Scholar
  141. 141.
    Yi WY, Lo KM, Mak T, Leung KS, Leung Y, Meng ML (2015) A survey of wireless sensor network based air pollution monitoring systems. Sensors (Basel) 15(12):31392–31427CrossRefGoogle Scholar
  142. 142.
    Rao S et al (2017) Future air pollution in the shared socio-economic pathways. Glob Environ Chang 42:346–358CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Szymon Kwiatkowski
    • 1
  • Merve Polat
    • 1
  • Weijia Yu
    • 1
  • Matthew S. Johnson
    • 1
    Email author
  1. 1.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark

Section editors and affiliations

  • Michael Evan Goodsite
    • 1
  • Matthew Stanley Johnson
    • 2
  • Ole Hertel
    • 3
  • Nanna Rahbek Jørgensen
    • 4
  1. 1.Faculty of ECMSThe University of AdelaideAdelaideAustralia
  2. 2.Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
  3. 3.Department of Atmospheric EnvironmentNational Environmental Research Institute, Aarhus UniversityRoskildeDenmark
  4. 4.Department of Chemical Engineering, Biotechnology and Environmental Technology, Faculty of EngineeringUniversity of Southern DenmarkOdense MDenmark