Skip to main content

Predictive Malaria Epidemiology, Models of Malaria Transmission and Elimination

  • Living reference work entry
  • First Online:
Encyclopedia of Malaria
  • 124 Accesses

Mathematical models of malaria transmission are tools which assist in the design and evaluation of malaria control and elimination programs and provide insight into the dynamics of malaria transmission. They range from simple sets of equations through to complex individual-based simulations. Models also have provided key metrics to quantify transmission and progress toward elimination, such as the basic reproduction number. In this chapter, we review past developments and applications of models to support and quantify progress toward malaria elimination and consider future challenges which models must address when informing modern elimination efforts.

Looking Back: Malaria Transmission Models in the Twentieth Century

The first mathematical model of malaria transmission was published in 1908 by Ronald Ross after being tasked with recommending methods for the prevention of malaria in Mauritius (Ross 1908). This model was based on an a priori description of how the prevalence of malaria...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alonso PA. Framework for malaria elimination. Geneva: World Health Organization; 2016.

    Google Scholar 

  • Bejon P, et al. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med. 2010;7:e1000304.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bejon P, et al. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots. elife. 2014;3:e02130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhatt S, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bousema T, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol. 2014;12(12):833–40.

    Article  CAS  PubMed  Google Scholar 

  • Breban R, Vardavas R, Blower S. Theory versus data: how to calculate R0? PLoS One. 2007;2:e282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkot TR. Non-random host selection by anopheline mosquitoes. Parasitol Today. 1988;4:156–62.

    Article  CAS  PubMed  Google Scholar 

  • Carter R, Mendis KN, Roberts D. Spatial targeting of interventions against malaria. Bull World Health Organ. 2000;78:1401–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chis Ster I, Singh BK, Ferguson NM. Epidemiological inference for partially observed epidemics: the example of the 2001 foot and mouth epidemic in Great Britain. Epidemics. 2009;1:21–34.

    Article  PubMed  Google Scholar 

  • Churcher TS, et al. Measuring the path toward malaria elimination. Science. 2014;344:1230–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements AC, Reid HL, Kelly GC, Hay SI. Further shrinking the malaria map: how can geospatial science help to achieve malaria elimination? Lancet Infect Dis. 2013;13:709–18.

    Article  PubMed  Google Scholar 

  • Cohen JM, Moonen B, Snow RW, Smith DL. How absolute is zero? An evaluation of historical and current definitions of malaria elimination. Malar J. 2010;9(1):213.

    Google Scholar 

  • Cottam EM, et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc Biol Sci. 2008;275:887–95.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cotter C, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.

    Article  PubMed  Google Scholar 

  • Dublin LI, Lotka AJ. On the True Rate of Natural Increase. J Am Stat Assoc. 1925;20:305.

    Google Scholar 

  • Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC. Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J. 2006;5:78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferguson NM, Donnelly CA, Anderson RM. Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain. Nature. 2001;413:542–8.

    Article  CAS  PubMed  Google Scholar 

  • Fine PEM. The interval between successive cases of an infectious disease. Am J Epidemiol. 2003;158:1039–47.

    Article  PubMed  Google Scholar 

  • Garrett-Jones C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ. 1964;30(2):241–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gething PW, et al. Declining malaria in Africa: improving the measurement of progress. Malar J. 2014;13:39.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin JT. Is a reproduction number of one a threshold for Plasmodium falciparum malaria elimination? Malar J. 2016;15:389.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffin JT, et al. Reducing Plasmodium falciparum malaria transmission in Africa: A model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hay SI, Smith DL, Snow RW. Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis. 2008;8:369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoshen MB, Heinrich R, Stein WD, Ginsburg H. Mathematical modelling of the within-host dynamics of Plasmodium falciparum. Parasitology. 2000;121(Pt 3):227–35. https://doi.org/10.1017/S0031182099006368.

    Article  PubMed  Google Scholar 

  • Li J, Blakeley D, Smith RJ. The failure of R0. Comput Math Methods Med. 2011;2011:527610.

    Article  PubMed  PubMed Central  Google Scholar 

  • Macdonald G. The analysis of equilibrium in malaria. Trop Dis Bull. 1952;49:813–29.

    CAS  PubMed  Google Scholar 

  • MacDonald G. Epidemiological basis of malaria control. Bull World Health Organ. 1956;15(3-5):613–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957.

    Google Scholar 

  • malERA Consultative Group on Modeling. A research agenda for malaria eradication: modeling. PLoS Med. 2011;8:e1000403.

    Article  Google Scholar 

  • Mandal S, et al. Mathematical models of malaria – a review. Malar J. 2011;10:202. https://doi.org/10.1186/1475-2875-10-202.

    Article  PubMed  PubMed Central  Google Scholar 

  • Molineaux L, Dietz K. Review of intra-host models of malaria. Parassitologia. 1999;41(1–3):221–31.

    CAS  PubMed  Google Scholar 

  • Molineaux, L. and Gramiccia, G. 1980. The Garki Project: Research on the epidemiology and control of malaria in the Sudan Savanna of West Africa. Geneva: World Health Organization.

    Google Scholar 

  • Moonen B, et al. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376:1592–603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Morelli MJ, et al. A bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput Biol. 2012;8:e1002768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okell LC, et al. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reiner RC, et al. Mapping residual transmission for malaria elimination. elife. 2015;4:e09520.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ross R. Prevention of malaria in Mauritius. London: Waterlow Sons Ltd; 1908.

    Google Scholar 

  • Ross R. Some quantitative studies in epidemiology. Nature. 1911;87(2188):466–7.

    Article  Google Scholar 

  • Ruktanonchai NW, et al. Identifying malaria transmission foci for elimination using human mobility data. PLoS Comput Biol. 2016;12(4):e1004846.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salje H, et al. How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proc Natl Acad Sci USA. 2016;113:13420–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DL, et al. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012;8:e1002588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DL, et al. A sticky situation: the unexpected stability of malaria elimination. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20120145.

    Article  Google Scholar 

  • Sturrock HJW, et al. Mapping malaria risk in low transmission settings: challenges and opportunities. Trends Parasitol. 2016;32:635–45.

    Article  PubMed  Google Scholar 

  • Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol. 2014;84:151–208.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker PGT, et al. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4:e474–84.

    Article  PubMed  Google Scholar 

  • Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160:509–16.

    Article  PubMed  Google Scholar 

  • Ypma RJF, et al. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc R Soc Lond B Biol Sci. 2011;279(1728):444–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra C Ghani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Routledge, I., Watson, O.J., Griffin, J.T., Ghani, A.C. (2018). Predictive Malaria Epidemiology, Models of Malaria Transmission and Elimination. In: Kremsner, P., Krishna, S. (eds) Encyclopedia of Malaria. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8757-9_79-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8757-9_79-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8757-9

  • Online ISBN: 978-1-4614-8757-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics