Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Predictive Malaria Epidemiology, Models of Malaria Transmission and Elimination

  • Isobel Routledge
  • Oliver J Watson
  • Jamie T Griffin
  • Azra C Ghani
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_79-1

Mathematical models of malaria transmission are tools which assist in the design and evaluation of malaria control and elimination programs and provide insight into the dynamics of malaria transmission. They range from simple sets of equations through to complex individual-based simulations. Models also have provided key metrics to quantify transmission and progress toward elimination, such as the basic reproduction number. In this chapter, we review past developments and applications of models to support and quantify progress toward malaria elimination and consider future challenges which models must address when informing modern elimination efforts.

Looking Back: Malaria Transmission Models in the Twentieth Century

The first mathematical model of malaria transmission was published in 1908 by Ronald Ross after being tasked with recommending methods for the prevention of malaria in Mauritius (Ross 1908). This model was based on an a priori description of how the prevalence of malaria...
This is a preview of subscription content, log in to check access.

References

  1. Alonso PA. Framework for malaria elimination. Geneva: World Health Organization; 2016.Google Scholar
  2. Bejon P, et al. Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med. 2010;7:e1000304.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bejon P, et al. A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots. elife. 2014;3:e02130.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhatt S, et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature. 2015;526:207–11.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bousema T, et al. Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med. 2012;9:e1001165.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bousema T, Okell L, Felger I, Drakeley C. Asymptomatic malaria infections: detectability, transmissibility and public health relevance. Nat Rev Microbiol. 2014;12(12):833–40.CrossRefPubMedGoogle Scholar
  7. Breban R, Vardavas R, Blower S. Theory versus data: how to calculate R0? PLoS One. 2007;2:e282.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Burkot TR. Non-random host selection by anopheline mosquitoes. Parasitol Today. 1988;4:156–62.CrossRefPubMedGoogle Scholar
  9. Carter R, Mendis KN, Roberts D. Spatial targeting of interventions against malaria. Bull World Health Organ. 2000;78:1401–11.PubMedPubMedCentralGoogle Scholar
  10. Chis Ster I, Singh BK, Ferguson NM. Epidemiological inference for partially observed epidemics: the example of the 2001 foot and mouth epidemic in Great Britain. Epidemics. 2009;1:21–34.CrossRefPubMedGoogle Scholar
  11. Churcher TS, et al. Measuring the path toward malaria elimination. Science. 2014;344:1230–2.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Clements AC, Reid HL, Kelly GC, Hay SI. Further shrinking the malaria map: how can geospatial science help to achieve malaria elimination? Lancet Infect Dis. 2013;13:709–18.CrossRefPubMedGoogle Scholar
  13. Cohen JM, Moonen B, Snow RW, Smith DL. How absolute is zero? An evaluation of historical and current definitions of malaria elimination. Malar J. 2010;9(1):213.Google Scholar
  14. Cottam EM, et al. Integrating genetic and epidemiological data to determine transmission pathways of foot-and-mouth disease virus. Proc Biol Sci. 2008;275:887–95.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cotter C, et al. The changing epidemiology of malaria elimination: new strategies for new challenges. Lancet. 2013;382:900–11.CrossRefPubMedGoogle Scholar
  16. Dublin LI, Lotka AJ. On the True Rate of Natural Increase. J Am Stat Assoc. 1925;20:305.Google Scholar
  17. Ernst KC, Adoka SO, Kowuor DO, Wilson ML, John CC. Malaria hotspot areas in a highland Kenya site are consistent in epidemic and non-epidemic years and are associated with ecological factors. Malar J. 2006;5:78.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ferguson NM, Donnelly CA, Anderson RM. Transmission intensity and impact of control policies on the foot and mouth epidemic in Great Britain. Nature. 2001;413:542–8.CrossRefPubMedGoogle Scholar
  19. Fine PEM. The interval between successive cases of an infectious disease. Am J Epidemiol. 2003;158:1039–47.CrossRefPubMedGoogle Scholar
  20. Garrett-Jones C. The human blood index of malaria vectors in relation to epidemiological assessment. Bull World Health Organ. 1964;30(2):241–61.PubMedPubMedCentralGoogle Scholar
  21. Gething PW, et al. Declining malaria in Africa: improving the measurement of progress. Malar J. 2014;13:39.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Griffin JT. Is a reproduction number of one a threshold for Plasmodium falciparum malaria elimination? Malar J. 2016;15:389.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Griffin JT, et al. Reducing Plasmodium falciparum malaria transmission in Africa: A model-based evaluation of intervention strategies. PLoS Med. 2010;7:e1000324.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Hay SI, Smith DL, Snow RW. Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis. 2008;8:369–78.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hoshen MB, Heinrich R, Stein WD, Ginsburg H. Mathematical modelling of the within-host dynamics of Plasmodium falciparum. Parasitology. 2000;121(Pt 3):227–35.  https://doi.org/10.1017/S0031182099006368.CrossRefPubMedGoogle Scholar
  26. Li J, Blakeley D, Smith RJ. The failure of R0. Comput Math Methods Med. 2011;2011:527610.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Macdonald G. The analysis of equilibrium in malaria. Trop Dis Bull. 1952;49:813–29.PubMedGoogle Scholar
  28. MacDonald G. Epidemiological basis of malaria control. Bull World Health Organ. 1956;15(3-5):613–26.PubMedPubMedCentralGoogle Scholar
  29. MacDonald G. The epidemiology and control of malaria. London: Oxford University Press; 1957.Google Scholar
  30. malERA Consultative Group on Modeling. A research agenda for malaria eradication: modeling. PLoS Med. 2011;8:e1000403.CrossRefGoogle Scholar
  31. Mandal S, et al. Mathematical models of malaria – a review. Malar J. 2011;10:202.  https://doi.org/10.1186/1475-2875-10-202.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Molineaux L, Dietz K. Review of intra-host models of malaria. Parassitologia. 1999;41(1–3):221–31.PubMedGoogle Scholar
  33. Molineaux, L. and Gramiccia, G. 1980. The Garki Project: Research on the epidemiology and control of malaria in the Sudan Savanna of West Africa. Geneva: World Health Organization.Google Scholar
  34. Moonen B, et al. Operational strategies to achieve and maintain malaria elimination. Lancet. 2010;376:1592–603.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Morelli MJ, et al. A bayesian inference framework to reconstruct transmission trees using epidemiological and genetic data. PLoS Comput Biol. 2012;8:e1002768.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Okell LC, et al. Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun. 2012;3:1237.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Reiner RC, et al. Mapping residual transmission for malaria elimination. elife. 2015;4:e09520.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ross R. Prevention of malaria in Mauritius. London: Waterlow Sons Ltd; 1908.Google Scholar
  39. Ross R. Some quantitative studies in epidemiology. Nature. 1911;87(2188):466–7.CrossRefGoogle Scholar
  40. Ruktanonchai NW, et al. Identifying malaria transmission foci for elimination using human mobility data. PLoS Comput Biol. 2016;12(4):e1004846.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Salje H, et al. How social structures, space, and behaviors shape the spread of infectious diseases using chikungunya as a case study. Proc Natl Acad Sci USA. 2016;113:13420–5.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Smith DL, et al. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012;8:e1002588.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Smith DL, et al. A sticky situation: the unexpected stability of malaria elimination. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20120145.CrossRefGoogle Scholar
  44. Sturrock HJW, et al. Mapping malaria risk in low transmission settings: challenges and opportunities. Trends Parasitol. 2016;32:635–45.CrossRefPubMedGoogle Scholar
  45. Tusting LS, Bousema T, Smith DL, Drakeley C. Measuring changes in plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol. 2014;84:151–208.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Walker PGT, et al. Estimating the most efficient allocation of interventions to achieve reductions in Plasmodium falciparum malaria burden and transmission in Africa: a modelling study. Lancet Glob Health. 2016;4:e474–84.CrossRefPubMedGoogle Scholar
  47. Wallinga J, Teunis P. Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am J Epidemiol. 2004;160:509–16.CrossRefPubMedGoogle Scholar
  48. Ypma RJF, et al. Unravelling transmission trees of infectious diseases by combining genetic and epidemiological data. Proc R Soc Lond B Biol Sci. 2011;279(1728):444–50.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Isobel Routledge
    • 1
  • Oliver J Watson
    • 1
  • Jamie T Griffin
    • 2
  • Azra C Ghani
    • 1
  1. 1.MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease EpidemiologyImperial College LondonLondonUK
  2. 2.School of Mathematical SciencesQueen Mary University of LondonLondonUK