Encyclopedia of Malaria

Living Edition
| Editors: Peter G. Kremsner, Sanjeev Krishna

Host Genetic Predisposition to Malaria

  • Christian N. Nguetse
  • Elizabeth S. EganEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8757-9_139-1

Introduction

The notion of innate genetic differences in susceptibility to malaria was initially proposed by Haldane in his “malaria hypothesis,” which suggested that certain deleterious mutations may be under positive selection because they decrease susceptibility to severe malaria (Haldane 1949). In 1954, A.C. Allison published the first evidence-based study supporting the malaria hypothesis, in which he observed both a lower prevalence of parasitemia and a lower parasite density in Ugandan children with sickle cell trait compared to those with normal red blood cells (Allison 1954). This association suggested that the sickle cell allele, which was fatal when homozygous, was protective against malaria when heterozygous. Further, it provided an evolutionary explanation for why sickle trait was so common in populations where malaria was hyper-endemic. It is now well-established that red blood cell polymorphisms that provide protection against severe malaria have risen to high rates in...

This is a preview of subscription content, log in to check access.

References

  1. Ackerman HC, et al. Complex haplotypic structure of the central MHC region flanking TNF in a West African population. Genes Immun. 2003;4:476–86.PubMedCrossRefGoogle Scholar
  2. Ahearn JM, Fearon DT. Structure and function of the complement receptors, CR1 (CD35) and CR2 (CD21). Adv Immunol. 1989;46:183–219.PubMedCrossRefGoogle Scholar
  3. Aidoo M, et al. Tumor necrosis factor-alpha promoter variant 2 (TNF2) is associated with pre-term delivery, infant mortality, and malaria morbidity in western Kenya: Asembo Bay Cohort Project IX. Genet Epidemiol. 2001;21:201–11.PubMedCrossRefGoogle Scholar
  4. Aidoo M, et al. Protective effects of the sickle cell gene against malaria morbidity and mortality. Lancet. 2002;359:1311–2.PubMedCrossRefGoogle Scholar
  5. Ali IM, et al. Host candidate gene polymorphisms and associated clearance of P. falciparum amodiaquine and fansidar resistance mutants in children less than 5 years in Cameroon. Pathog Glob Health. 2014;108:323–33.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Allen SJ, et al. alpha+-Thalassemia protects children against disease caused by other infections as well as malaria. Proc Natl Acad Sci USA. 1997;94:14736–41.PubMedCrossRefGoogle Scholar
  7. Allen SJ, et al. Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3. Am J Trop Med Hyg. 1999;60:1056–60.PubMedCrossRefGoogle Scholar
  8. Allison AC. Protection afforded by sickle-cell trait against subtertian malareal infection. Br Med J. 1954;1:290–4.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Allison AC. Polymorphism and natural selection in human populations. Cold Spring Harb Symp Quant Biol. 1965;29:137–49.CrossRefGoogle Scholar
  10. Allison AC, Clyde DF. Malaria in African children with deficient erythrocyte glucose-6-phosphate dehydrogenase. Br Med J. 1961;1:1346–9.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Amir el AD, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31: 545–52.CrossRefGoogle Scholar
  12. Apinjoh TO, et al. Association of cytokine and Toll-like receptor gene polymorphisms with severe malaria in three regions of Cameroon. PLoS One. 2013;8:e81071.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arie T, et al. Hemoglobin C modulates the surface topography of Plasmodium falciparum-infected erythrocytes. J Struct Biol. 2005;150:163–9.PubMedCrossRefGoogle Scholar
  14. Ariey F, et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature. 2014;505:50–5.PubMedCrossRefGoogle Scholar
  15. Artavanis-Tsakonas K, et al. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol. 2003;133:145–52.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Aucan C, et al. Interferon-alpha receptor-1 (IFNAR1) variants are associated with protection against cerebral malaria in the Gambia. Genes Immun. 2003;4:275–82.PubMedCrossRefGoogle Scholar
  17. Ayi K, et al. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood. 2004;104:3364–71.PubMedCrossRefGoogle Scholar
  18. Ayi K, et al. Pyruvate kinase deficiency and malaria. N Engl J Med. 2008;358:1805–10.PubMedCrossRefGoogle Scholar
  19. Balmer P, et al. The effect of nitric oxide on the growth of Plasmodium falciparum, P. chabaudi and P. berghei in vitro. Parasite Immunol. 2000;22:97–106.PubMedCrossRefGoogle Scholar
  20. Bennett S, et al. Human leucocyte antigen (HLA) and malaria morbidity in a Gambian community. Trans R Soc Trop Med Hyg. 1993;87:286–7.PubMedCrossRefGoogle Scholar
  21. Booth PB, McLoughlin K. The Gerbich blood group system, especially in Melanesians. Vox Sang. 1972;22:73–84.PubMedCrossRefGoogle Scholar
  22. Bostrom S, et al. Changes in the levels of cytokines, chemokines and malaria-specific antibodies in response to Plasmodium falciparum infection in children living in sympatry in Mali. Malar J. 2012;11:109.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boutlis CS, et al. Inducible nitric oxide synthase (NOS2) promoter CCTTT repeat polymorphism: relationship to in vivo nitric oxide production/NOS activity in an asymptomatic malaria-endemic population. Am J Trop Med Hyg. 2003;69:569–73.PubMedCrossRefGoogle Scholar
  24. Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–95.CrossRefGoogle Scholar
  25. Burgmann H, et al. Levels of stem cell factor and interleukin-3 in serum in acute Plasmodium falciparum malaria. Clin Diagn Lab Immunol. 1997;4:226–8.PubMedPubMedCentralGoogle Scholar
  26. Burgner D, et al. Inducible nitric oxide synthase polymorphism and fatal cerebral malaria. Lancet. 1998;352:1193–4.PubMedCrossRefGoogle Scholar
  27. Cabantous S, et al. Evidence that interferon-gamma plays a protective role during cerebral malaria. J Infect Dis. 2005;192:854–60.PubMedCrossRefGoogle Scholar
  28. Cabantous S, et al. Alleles 308A and 238A in the tumor necrosis factor alpha gene promoter do not increase the risk of severe malaria in children with Plasmodium falciparum infection in Mali. Infect Immun. 2006;74:7040–2.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cabantous S, et al. Genetic evidence for the aggravation of Plasmodium falciparum malaria by interleukin 4. J Infect Dis. 2009;200:1530–9.PubMedCrossRefGoogle Scholar
  30. Cabantous S, et al. Genotype combinations of two IL4 polymorphisms influencing IL-4 plasma levels are associated with different risks of severe malaria in the Malian population. Immunogenetics. 2015;67:283–8.PubMedCrossRefGoogle Scholar
  31. Campino S, et al. TLR9 polymorphisms in African populations: no association with severe malaria, but evidence of cis-variants acting on gene expression. Malar J. 2009;8:44.PubMedPubMedCentralCrossRefGoogle Scholar
  32. Cappadoro M, et al. Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood. 1998;92:2527–34.PubMedGoogle Scholar
  33. Carlson J, Wahlgren M. Plasmodium falciparum erythrocyte rosetting is mediated by promiscuous lectin-like interactions. J Exp Med. 1992;176:1311–7.PubMedCrossRefGoogle Scholar
  34. Carvalho LH, et al. IL-4-secreting CD4+ T cells are crucial to the development of CD8+ T-cell responses against malaria liver stages. Nat Med. 2002;8:166–70.PubMedCrossRefGoogle Scholar
  35. Cattani JA, et al. Hereditary ovalocytosis and reduced susceptibility to malaria in Papua New Guinea. Trans R Soc Trop Med Hyg. 1987;81:705–9.PubMedCrossRefGoogle Scholar
  36. Chang SH, Dong C. IL-17F: regulation, signaling and function in inflammation. Cytokine. 2009;46:7–11.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chartrain NA, et al. Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem. 1994;269:6765–72.PubMedGoogle Scholar
  38. Chotivanich KT, et al. Rosetting characteristics of uninfected erythrocytes from healthy individuals and malaria patients. Ann Trop Med Parasitol. 1998;92:45–56.PubMedCrossRefGoogle Scholar
  39. Clark IA, et al. Inhibition of murine malaria (Plasmodium chabaudi) in vivo by recombinant interferon-gamma or tumor necrosis factor, and its enhancement by butylated hydroxyanisole. J Immunol. 1987;139:3493–6.PubMedGoogle Scholar
  40. Clark TG, et al. Tumor necrosis factor and lymphotoxin-alpha polymorphisms and severe malaria in African populations. J Infect Dis. 2009;199:569–75.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Coban C, et al. Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin. J Exp Med. 2005;201:19–25.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Cockburn IA, et al. A human complement receptor 1 polymorphism that reduces Plasmodium falciparum rosetting confers protection against severe malaria. Proc Natl Acad Sci USA. 2004;101:272–7.PubMedCrossRefGoogle Scholar
  43. Contreras M, et al. The MNSs antigen Ridley (Ria). Vox Sang. 1984;46:360–5.PubMedCrossRefGoogle Scholar
  44. Cortes A, et al. Adhesion of Plasmodium falciparum-infected red blood cells to CD36 under flow is enhanced by the cerebral malaria-protective trait South-East Asian ovalocytosis. Mol Biochem Parasitol. 2005;142:252–7.PubMedCrossRefGoogle Scholar
  45. Cramer JP, et al. iNOS promoter variants and severe malaria in Ghanaian children. Tropical Med Int Health. 2004;9:1074–80.CrossRefGoogle Scholar
  46. Culleton RL, et al. Failure to detect Plasmodium vivax in West and Central Africa by PCR species typing. Malar J. 2008;7:174.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Curtidor H, et al. Specific erythrocyte binding capacity and biological activity of Plasmodium falciparum erythrocyte binding ligand 1 (EBL-1)-derived peptides. Protein Sci. 2005;14:464–73.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Cyrklaff M, et al. Hemoglobins S and C interfere with actin remodeling in Plasmodium falciparum-infected erythrocytes. Science. 2011;334:1283–6.PubMedCrossRefGoogle Scholar
  49. Dahr W, et al. The Dantu erythrocyte phenotype of the NE variety. I. Dodecylsulfate polyacrylamide gel electrophoretic studies. Blut. 1987;55:19–31.PubMedCrossRefGoogle Scholar
  50. Daniels G. The molecular genetics of blood group polymorphism. Transpl Immunol. 2005;14:143–53.PubMedCrossRefGoogle Scholar
  51. Daniels G. Human Blood Groups. Somerset: Wiley; 2013.CrossRefGoogle Scholar
  52. Dankwa S, et al. Genetic evidence for erythrocyte receptor glycophorin B expression levels defining a dominant Plasmodium falciparum invasion pathway into human erythrocytes. Infect Immun. 2017;85:1–15.Google Scholar
  53. Dejean AS, et al. Transcription factor Foxo3 controls the magnitude of T cell immune responses by modulating the function of dendritic cells. Nat Immunol. 2009;10:504–13.PubMedPubMedCentralCrossRefGoogle Scholar
  54. Dhangadamajhi G, et al. The CCTTT pentanucleotide microsatellite in iNOS promoter influences the clinical outcome in P. falciparum infection. Parasitol Res. 2009;104:1315–20.PubMedCrossRefGoogle Scholar
  55. Diakite M, et al. A genetic association study in the Gambia using tagging polymorphisms in the major histocompatibility complex class III region implicates a HLA-B associated transcript 2 polymorphism in severe malaria susceptibility. Hum Genet. 2009;125:105–9.PubMedCrossRefGoogle Scholar
  56. Diallo DA, et al. A comparison of anemia in hemoglobin C and normal hemoglobin A children with Plasmodium falciparum malaria. Acta Trop. 2004;90:295–9.PubMedCrossRefGoogle Scholar
  57. Dudakov JA, et al. Interleukin-22: immunobiology and pathology. Annu Rev Immunol. 2015;33:747–85.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Dunstan SJ, et al. Variation in human genes encoding adhesion and proinflammatory molecules are associated with severe malaria in the Vietnamese. Genes Immun. 2012;13:503–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Duraisingh MT, et al. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc Natl Acad Sci USA. 2003;100:4796–801.PubMedCrossRefGoogle Scholar
  60. El Sahly HM, et al. Safety and immunogenicity of a recombinant nonglycosylated erythrocyte binding antigen 175 Region II malaria vaccine in healthy adults living in an area where malaria is not endemic. Clin Vaccine Immunol. 2010;17:1552–9.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Enevold A, et al. Associations between alpha+-thalassemia and Plasmodium falciparum malarial infection in northeastern Tanzania. J Infect Dis. 2007;196:451–9.PubMedCrossRefGoogle Scholar
  62. Engwerda CR, et al. Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J Exp Med. 2002;195:1371–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Eskdale J, Gallagher G. A polymorphic dinucleotide repeat in the human IL-10 promoter. Immunogenetics. 1995;42:444–5.PubMedCrossRefGoogle Scholar
  64. Esposito S, et al. Role of polymorphisms of toll-like receptor (TLR) 4, TLR9, toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and FCGR2A genes in malaria susceptibility and severity in Burundian children. Malar J. 2012;11:196.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Facer CA. Erythrocyte sialoglycoproteins and Plasmodium falciparum invasion. Trans R Soc Trop Med Hyg. 1983;77:524–30.PubMedCrossRefGoogle Scholar
  66. Fairhurst RM, et al. Abnormal display of PfEMP-1 on erythrocytes carrying haemoglobin C may protect against malaria. Nature. 2005;435:1117–21.PubMedCrossRefGoogle Scholar
  67. Fang FC. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J Clin Invest. 1997;99:2818–25.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Favre N, et al. The course of Plasmodium chabaudi chabaudi infections in interferon-gamma receptor deficient mice. Parasite Immunol. 1997;19:375–83.PubMedCrossRefGoogle Scholar
  69. Ferreira A, et al. Inhibition of development of exoerythrocytic forms of malaria parasites by gamma-interferon. Science. 1986;232:881–4.PubMedCrossRefGoogle Scholar
  70. Ferreira A, et al. Sickle hemoglobin confers tolerance to Plasmodium infection. Cell. 2011;145:398–409.PubMedCrossRefGoogle Scholar
  71. Field SP, et al. Glycophorin variants and Plasmodium falciparum: protective effect of the Dantu phenotype in vitro. Hum Genet. 1994;93:148–50.PubMedCrossRefGoogle Scholar
  72. Fischer PR, Boone P. Short report: severe malaria associated with blood group. Am J Trop Med Hyg. 1998;58:122–3.PubMedCrossRefGoogle Scholar
  73. Flint J, et al. High frequencies of alpha-thalassaemia are the result of natural selection by malaria. Nature. 1986;321:744–50.PubMedCrossRefGoogle Scholar
  74. Flint J, et al. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol. 1998;11:1–51, Elsevier.PubMedCrossRefGoogle Scholar
  75. Flori L, et al. TNF as a malaria candidate gene: polymorphism-screening and family-based association analysis of mild malaria attack and parasitemia in Burkina Faso. Genes Immun. 2005;6:472–80.PubMedCrossRefGoogle Scholar
  76. Fraser GR, et al. Population genetic studies in the Congo. 3. Blood groups (ABO, MNSs, Rh, Jsa). Am J Hum Genet. 1966;18:546–52.PubMedPubMedCentralGoogle Scholar
  77. Friedman MJ, et al. The role of hemoglobins C, S, and Nbalt in the inhibition of malaria parasite development in vitro. Am J Trop Med Hyg. 1979;28:777–80.PubMedCrossRefGoogle Scholar
  78. Fucharoen S, Weatherall DJ. The hemoglobin E thalassemias. Cold Spring Harb Perspect Med. 2012;2:a011734.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Furthmayr H. Glycophorins A, B, and C: a family of sialoglycoproteins. Isolation and preliminary characterization of trypsin derived peptides. J Supramol Struct. 1978;9:79–95.PubMedCrossRefGoogle Scholar
  80. Garcia A, et al. Linkage analysis of blood Plasmodium falciparum levels: interest of the 5q31–q33 chromosome region. Am J Trop Med Hyg. 1998;58:705–9.PubMedCrossRefGoogle Scholar
  81. Garcia A, et al. Association of HLA-G 3′UTR polymorphisms with response to malaria infection: a first insight. Infect Genet Evol. 2013;16:263–9.PubMedCrossRefGoogle Scholar
  82. Gardner B, et al. Epitopes on sialoglycoprotein alpha: evidence for heterogeneity in the molecule. Immunology. 1989;68:283–9.PubMedPubMedCentralGoogle Scholar
  83. Gately MK, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521.CrossRefGoogle Scholar
  84. Genton B, et al. Ovalocytosis and cerebral malaria. Nature. 1995;378:564–5.PubMedCrossRefGoogle Scholar
  85. Gichohi-Wainaina WN, et al. Tumour necrosis factor allele variants and their association with the occurrence and severity of malaria in African children: a longitudinal study. Malar J. 2015;14:249.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gilles HM, et al. Glucose-6-phosphate-dehydrogenase deficiency, sickling, and malaria in African children in South Western Nigeria. Lancet. 1967;1:138–40.PubMedCrossRefGoogle Scholar
  87. Goldberg AC, Rizzo LV. MHC structure and function – antigen presentation. Part 1. Einstein (Sao Paulo). 2015;13:153–6.CrossRefGoogle Scholar
  88. Gong L, et al. Evidence for both innate and acquired mechanisms of protection from Plasmodium falciparum in children with sickle cell trait. Blood. 2012;119:3808–14.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Goonasekera HW, et al. Population screening for hemoglobinopathies. Annu Rev Genomics Hum Genet. 2018;19(1):355–80.PubMedCrossRefGoogle Scholar
  90. Gouagna LC, et al. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31.PubMedCrossRefGoogle Scholar
  91. Grau GE, et al. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989;320:1586–91.PubMedCrossRefGoogle Scholar
  92. Green SJ, et al. Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol Lett. 1990;25:15–9.PubMedCrossRefGoogle Scholar
  93. Greene JA, et al. Toll-like receptor polymorphisms and cerebral malaria: TLR2 Delta22 polymorphism is associated with protection from cerebral malaria in a case control study. Malar J. 2012;11:47.PubMedPubMedCentralGoogle Scholar
  94. Guindo A, et al. X-linked G6PD deficiency protects hemizygous males but not heterozygous females against severe malaria. PLoS Med. 2007;4:e66.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Hahn WO, et al. A common TLR1 polymorphism is associated with higher parasitaemia in a Southeast Asian population with Plasmodium falciparum malaria. Malar J. 2016;15:12.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Haldane J. The rate of mutation of human genes. Hereditas. 1949;35:267–273.CrossRefGoogle Scholar
  97. Hamann L, et al. The toll-like receptor 1 variant S248N influences placental malaria. Infect Genet Evol. 2010;10:785–9.PubMedCrossRefGoogle Scholar
  98. Hananantachai H, et al. Lack of association of −308A/G TNFA promoter and 196R/M TNFR2 polymorphisms with disease severity in Thai adult malaria patients. Am J Med Genet. 2001;102:391–2.PubMedCrossRefGoogle Scholar
  99. Hananantachai H, et al. Significant association between TNF-alpha (TNF) promoter allele (-1031C, −863C, and −857C) and cerebral malaria in Thailand. Tissue Antigens. 2007;69:277–80.PubMedCrossRefGoogle Scholar
  100. Hill AV, et al. Common west African HLA antigens are associated with protection from severe malaria. Nature. 1991;352:595–600.PubMedCrossRefGoogle Scholar
  101. Hill AV, et al. Human leukocyte antigens and natural selection by malaria. Philos Trans R Soc Lond Ser B Biol Sci. 1994;346:379–85.CrossRefGoogle Scholar
  102. Hobbs MR, et al. A new NOS2 promoter polymorphism associated with increased nitric oxide production and protection from severe malaria in Tanzanian and Kenyan children. Lancet. 2002;360:1468–75.PubMedCrossRefGoogle Scholar
  103. Hutagalung R, et al. Influence of hemoglobin E trait on the severity of Falciparum malaria. J Infect Dis. 1999;179:283–6.PubMedCrossRefGoogle Scholar
  104. Iwalokun BA, et al. Toll-like receptor (TLR4) Asp299Gly and Thr399Ile polymorphisms in relation to clinical falciparum malaria among Nigerian children: a multisite cross-sectional immunogenetic study in Lagos. Genes Environ. 2015;37:3.PubMedPubMedCentralCrossRefGoogle Scholar
  105. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annu Rev Immunol. 2002;20:197–216.CrossRefGoogle Scholar
  106. Jha AN, et al. IL-4 haplotype −590T, −34T and intron-3 VNTR R2 is associated with reduced malaria risk among ancestral indian tribal populations. PLoS One. 2012;7:e48136.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Jiang L, et al. Evidence for erythrocyte-binding antigen 175 as a component of a ligand-blocking blood-stage malaria vaccine. Proc Natl Acad Sci USA. 2011;108:7553–8.PubMedCrossRefGoogle Scholar
  108. Kanchan K, et al. Interferon-gamma (IFNG) microsatellite repeat and single nucleotide polymorphism haplotypes of IFN-alpha receptor (IFNAR1) associated with enhanced malaria susceptibility in Indian populations. Infect Genet Evol. 2015;29:6–14.PubMedCrossRefGoogle Scholar
  109. Kar A, et al. Influence of common variants of TLR4 and TLR9 on clinical outcomes of Plasmodium falciparum malaria in Odisha, India. Infect Genet Evol. 2015;36:356–62.PubMedCrossRefGoogle Scholar
  110. Khor CC, et al. Positive replication and linkage disequilibrium mapping of the chromosome 21q22.1 malaria susceptibility locus. Genes Immun. 2007;8:570–6.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Knight JC, et al. A polymorphism that affects OCT-1 binding to the TNF promoter region is associated with severe malaria. Nat Genet. 1999;22:145–50.CrossRefGoogle Scholar
  112. Ko WY, et al. Effects of natural selection and gene conversion on the evolution of human glycophorins coding for MNS blood polymorphisms in malaria-endemic African populations. Am J Hum Genet. 2011;88:741–54.PubMedPubMedCentralCrossRefGoogle Scholar
  113. Koch M, Baum J. The mechanics of malaria parasite invasion of the human erythrocyte – towards a reassessment of the host cell contribution. Cell Microbiol. 2016;18:319–29.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Koch O, et al. IFNGR1 gene promoter polymorphisms and susceptibility to cerebral malaria. J Infect Dis. 2002;185:1684–7.PubMedCrossRefGoogle Scholar
  115. Koch O, et al. Investigation of malaria susceptibility determinants in the IFNG/IL26/IL22 genomic region. Genes Immun. 2005;6:312–8.PubMedCrossRefGoogle Scholar
  116. Krause MA, et al. alpha-Thalassemia impairs the cytoadherence of Plasmodium falciparum-infected erythrocytes. PLoS One. 2012;7:e37214.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Kremsner PG, et al. High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 1996;90:44–7.PubMedCrossRefGoogle Scholar
  118. Krishnegowda G, et al. Induction of proinflammatory responses in macrophages by the glycosylphosphatidylinositols of Plasmodium falciparum: cell signaling receptors, glycosylphosphatidylinositol (GPI) structural requirement, and regulation of GPI activity. J Biol Chem. 2005;280:8606–16.PubMedCrossRefGoogle Scholar
  119. Kumar H, et al. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388:621–5.PubMedCrossRefGoogle Scholar
  120. Kumaratilake LM, Ferrante A. IL-4 inhibits macrophage-mediated killing of Plasmodium falciparum in vitro. A possible parasite-immune evasion mechanism. J Immunol. 1992;149:194–9.PubMedGoogle Scholar
  121. Kun JF, et al. Polymorphism in promoter region of inducible nitric oxide synthase gene and protection against malaria. Lancet. 1998;351:265–6.PubMedCrossRefGoogle Scholar
  122. Kun JF, et al. Nitric oxide synthase 2(Lambarene) (G-954C), increased nitric oxide production, and protection against malaria. J Infect Dis. 2001;184:330–6.PubMedCrossRefGoogle Scholar
  123. Kurtzhals JA, et al. The cytokine balance in severe malarial anemia. J Infect Dis. 1999;180:1753–5.PubMedCrossRefGoogle Scholar
  124. Kwiatkowski D. Malarial toxins and the regulation of parasite density. Parasitol Today. 1995;11:206–12.PubMedCrossRefGoogle Scholar
  125. Kwiatkowski D, et al. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990;336:1201–4.PubMedCrossRefGoogle Scholar
  126. Lalani I, et al. Interleukin-10: biology, role in inflammation and autoimmunity. Ann Allergy Asthma Immunol. 1997;79:469–83.PubMedCrossRefGoogle Scholar
  127. LaMonte G, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12:187–99.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Langhorne J, et al. Immunity to malaria: more questions than answers. Nat Immunol. 2008;9:725–32.PubMedCrossRefGoogle Scholar
  129. Leffler EM, et al. Resistance to malaria through structural variation of red blood cell invasion receptors. Science. 2017;356:eaam6393.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Lell B, et al. The role of red blood cell polymorphisms in resistance and susceptibility to malaria. Clin Infect Dis. 1999;28:794–9.PubMedCrossRefGoogle Scholar
  131. Leoratti FM, et al. Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. J Infect Dis. 2008;198:772–80.PubMedCrossRefGoogle Scholar
  132. Levesque MC, et al. Nitric oxide synthase type 2 promoter polymorphisms, nitric oxide production, and disease severity in Tanzanian children with malaria. J Infect Dis. 1999;180:1994–2002.PubMedCrossRefGoogle Scholar
  133. Levings MK, et al. The role of IL-10 and TGF-beta in the differentiation and effector function of T regulatory cells. Int Arch Allergy Immunol. 2002;129:263–76.CrossRefGoogle Scholar
  134. Li X, et al. Identification of a specific region of Plasmodium falciparum EBL-1 that binds to host receptor glycophorin B and inhibits merozoite invasion in human red blood cells. Mol Biochem Parasitol. 2012;183:23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  135. Lin E, et al. Minimal association of common red blood cell polymorphisms with Plasmodium falciparum infection and uncomplicated malaria in Papua New Guinean school children. Am J Trop Med Hyg. 2010;83:828–33.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lopaticki S, et al. Reticulocyte and erythrocyte binding-like proteins function cooperatively in invasion of human erythrocytes by malaria parasites. Infect Immun. 2011;79:1107–17.PubMedCrossRefPubMedCentralGoogle Scholar
  137. Lopez AF, et al. Recombinant human interleukin-3 stimulation of hematopoiesis in humans: loss of responsiveness with differentiation in the neutrophilic myeloid series. Blood. 1988;72:1797–804.PubMedPubMedCentralGoogle Scholar
  138. Luzzatto L, et al. Glucose-6-phosphate dehydrogenase deficient red cells: resistance to infection by malarial parasites. Science. 1969;164:839–42.PubMedCrossRefGoogle Scholar
  139. Lwanira CN, et al. Prevalence of polymorphisms in glucose-6-phosphate dehydrogenase, sickle haemoglobin and nitric oxide synthase genes and their relationship with incidence of uncomplicated malaria in Iganga, Uganda. Malar J. 2017;16:322.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Lyke KE, et al. Serum levels of the proinflammatory cytokines interleukin-1 beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect Immun. 2004;72:5630–7.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Lyke KE, et al. Association of HLA alleles with Plasmodium falciparum severity in Malian children. Tissue Antigens. 2011;77:562–71.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Machado P, et al. Malaria: looking for selection signatures in the human PKLR gene region. Br J Haematol. 2010;149:775–84.PubMedCrossRefGoogle Scholar
  143. Mackinnon MJ, et al. Heritability of malaria in Africa. PLoS Med. 2005;2:e340.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Maier AG, et al. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat Med. 2003;9:87–92.PubMedCrossRefGoogle Scholar
  145. Maiga B, et al. Human candidate polymorphisms in sympatric ethnic groups differing in malaria susceptibility in Mali. PLoS One. 2013;8:e75675.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Malaria Genomic Epidemiology Network, et al. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature. 2015;526:253–7.PubMedCentralCrossRefPubMedGoogle Scholar
  147. Manjurano A, et al. Candidate human genetic polymorphisms and severe malaria in a Tanzanian population. PLoS One. 2012;7:e47463.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Manning L, et al. A Toll-like receptor-1 variant and its characteristic cellular phenotype is associated with severe malaria in Papua New Guinean children. Genes Immun. 2016;17:52–9.PubMedCrossRefGoogle Scholar
  149. Marquet S, et al. A functional promoter variant in IL12B predisposes to cerebral malaria. Hum Mol Genet. 2008;17:2190–5.PubMedCrossRefGoogle Scholar
  150. Marquet S, et al. The IL17F and IL17RA genetic variants increase risk of cerebral malaria in two African populations. Infect Immun. 2015;84:590–7.PubMedCrossRefGoogle Scholar
  151. Marquet S, et al. A functional IL22 polymorphism (rs2227473) is associated with predisposition to childhood cerebral malaria. Sci Rep. 2017;7:41636.PubMedPubMedCentralCrossRefGoogle Scholar
  152. May J, et al. HLA class II factors associated with Plasmodium falciparum merozoite surface antigen allele families. J Infect Dis. 1999;179:1042–5.PubMedCrossRefPubMedCentralGoogle Scholar
  153. May J, et al. HLA-DQB1*0501-restricted Th1 type immune responses to Plasmodium falciparum liver stage antigen 1 protect against malaria anemia and reinfections. J Infect Dis. 2001;183:168–72.PubMedCrossRefPubMedCentralGoogle Scholar
  154. May J, et al. Hemoglobin variants and disease manifestations in severe falciparum malaria. JAMA. 2007;297:2220–6.PubMedCrossRefPubMedCentralGoogle Scholar
  155. Mayer DC, et al. Glycophorin B is the erythrocyte receptor of Plasmodium falciparum erythrocyte-binding ligand, EBL-1. Proc Natl Acad Sci USA. 2009;106:5348–52.PubMedCrossRefPubMedCentralGoogle Scholar
  156. McGuire W, et al. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature. 1994;371:508–10.PubMedCrossRefPubMedCentralGoogle Scholar
  157. McGuire W, et al. Severe malarial anemia and cerebral malaria are associated with different tumor necrosis factor promoter alleles. J Infect Dis. 1999;179:287–90.PubMedCrossRefPubMedCentralGoogle Scholar
  158. Medzhitov R, Janeway Jr C. Innate immunity. N Engl J Med. 2000;343:338–44.CrossRefGoogle Scholar
  159. Merry AH, et al. The use of monoclonal antibodies to quantify the levels of sialoglycoproteins alpha and delta and variant sialoglycoproteins in human erythrocyte membranes. Biochem J. 1986;233:93–8.PubMedPubMedCentralCrossRefGoogle Scholar
  160. Meyer CG, et al. TNFalpha-308A associated with shorter intervals of Plasmodium falciparum reinfections. Tissue Antigens. 2002;59:287–92.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Meyer CG, et al. IL3 variant on chromosomal region 5q31–33 and protection from recurrent malaria attacks. Hum Mol Genet. 2011;20:1173–81.PubMedCrossRefGoogle Scholar
  162. Mgone CS, et al. Occurrence of the erythrocyte band 3 (AE1) gene deletion in relation to malaria endemicity in Papua New Guinea. Trans R Soc Trop Med Hyg. 1996;90:228–31.PubMedCrossRefPubMedCentralGoogle Scholar
  163. Miller LH, et al. Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. Science. 1975;189:561–3.PubMedCrossRefPubMedCentralGoogle Scholar
  164. Miller LH, et al. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976;295:302–4.PubMedCrossRefPubMedCentralGoogle Scholar
  165. Miller LH, et al. Evidence for differences in erythrocyte surface receptors for the malarial parasites, Plasmodium falciparum and Plasmodium knowlesi. J Exp Med. 1977;146:277–81.PubMedCrossRefPubMedCentralGoogle Scholar
  166. Min-Oo G, et al. Pyruvate kinase deficiency in mice protects against malaria. Nat Genet. 2003;35:357–62.PubMedCrossRefPubMedCentralGoogle Scholar
  167. Mirchev R, et al. Membrane compartmentalization in Southeast Asian ovalocytosis red blood cells. Br J Haematol. 2011;155:111–21.PubMedPubMedCentralCrossRefGoogle Scholar
  168. Mockenhaupt FP, et al. Alpha(+)-thalassemia protects African children from severe malaria. Blood. 2004;104:2003–6.PubMedCrossRefPubMedCentralGoogle Scholar
  169. Mockenhaupt FP, et al. Toll-like receptor (TLR) polymorphisms in African children: common TLR-4 variants predispose to severe malaria. Proc Natl Acad Sci USA. 2006a;103:177–82.PubMedCrossRefPubMedCentralGoogle Scholar
  170. Mockenhaupt FP, et al. Common polymorphisms of toll-like receptors 4 and 9 are associated with the clinical manifestation of malaria during pregnancy. J Infect Dis. 2006b;194:184–8.PubMedCrossRefPubMedCentralGoogle Scholar
  171. Modell B, Darlison M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ. 2008;86:480–7.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Modiano G, et al. Protection against malaria morbidity: near-fixation of the alpha-thalassemia gene in a Nepalese population. Am J Hum Genet. 1991;48:390–7.PubMedPubMedCentralGoogle Scholar
  173. Modiano D, et al. Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature. 2001;414:305–8.PubMedCrossRefPubMedCentralGoogle Scholar
  174. Mombo LE, et al. Human genetic polymorphisms and asymptomatic Plasmodium falciparum malaria in Gabonese schoolchildren. Am J Trop Med Hyg. 2003;68:186–90.PubMedCrossRefGoogle Scholar
  175. Morahan G, et al. A promoter polymorphism in the gene encoding interleukin-12 p40 (IL12B) is associated with mortality from cerebral malaria and with reduced nitric oxide production. Genes Immun. 2002;3:414–8.PubMedCrossRefGoogle Scholar
  176. Mordmuller BG, et al. Tumor necrosis factor in Plasmodium falciparum malaria: high plasma level is associated with fever, but high production capacity is associated with rapid fever clearance. Eur Cytokine Netw. 1997;8:29–35.PubMedGoogle Scholar
  177. Moulds JM, et al. Identification of complement receptor one (CR1) polymorphisms in west Africa. Genes Immun. 2000;1:325–9.PubMedCrossRefGoogle Scholar
  178. Naka I, et al. IFNGR1 polymorphisms in Thai malaria patients. Infect Genet Evol. 2009a;9:1406–9.PubMedCrossRefGoogle Scholar
  179. Naka I, et al. Identification of a haplotype block in the 5q31 cytokine gene cluster associated with the susceptibility to severe malaria. Malar J. 2009b;8:232.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Nathan C. Inducible nitric oxide synthase: what difference does it make? J Clin Invest. 1997;100:2417–23.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Newsome F. Increased phagocytosis of non-parasitized red cells in Plasmodium berghei malaria. Ann Trop Med Parasitol. 1984;78:323–5.PubMedCrossRefGoogle Scholar
  182. Nguetse CN, et al. FOXO3A regulatory polymorphism and susceptibility to severe malaria in Gabonese children. Immunogenetics. 2015;67:67–71.PubMedCrossRefGoogle Scholar
  183. Nguyen TN, et al. Association of a functional TNF variant with Plasmodium falciparum parasitaemia in a congolese population. Genes Immun. 2017;18:152–7.PubMedCrossRefGoogle Scholar
  184. Noguchi E, et al. An association study of asthma and total serum immunoglobin E levels for Toll-like receptor polymorphisms in a Japanese population. Clin Exp Allergy. 2004;34:177–83.PubMedCrossRefGoogle Scholar
  185. Ohashi J, et al. Significant association of longer forms of CCTTT Microsatellite repeat in the inducible nitric oxide synthase promoter with severe malaria in Thailand. J Infect Dis. 2002;186:578–81.PubMedCrossRefGoogle Scholar
  186. Ohashi J, et al. A single-nucleotide substitution from C to T at position −1055 in the IL-13 promoter is associated with protection from severe malaria in Thailand. Genes Immun. 2003;4:528–31.PubMedCrossRefGoogle Scholar
  187. Ojurongbe O, et al. Genetic variants of tumor necrosis factor-alpha -308G/A (rs1800629) but not Toll-interacting proteins or vitamin D receptor genes enhances susceptibility and severity of malaria infection. Immunogenetics. 2017;70:135–140.PubMedCrossRefGoogle Scholar
  188. Okeyo WA, et al. Interleukin (IL)-13 promoter polymorphisms (−7402 T/G and −4729G/A) condition susceptibility to pediatric severe malarial anemia but not circulating IL-13 levels. BMC Immunol. 2013;14:15.PubMedPubMedCentralCrossRefGoogle Scholar
  189. Olaniyan SA, et al. Tumour necrosis factor alpha promoter polymorphism, TNF-238 is associated with severe clinical outcome of falciparum malaria in Ibadan southwest Nigeria. Acta Trop. 2016;161:62–7.PubMedCrossRefGoogle Scholar
  190. Olson JA, Nagel RL. Synchronized cultures of P falciparum in abnormal red cells: the mechanism of the inhibition of growth in HbCC cells. Blood. 1986;67:997–1001.PubMedGoogle Scholar
  191. Omar AH, et al. Toll-like receptor 9 (TLR9) polymorphism associated with symptomatic malaria: a cohort study. Malar J. 2012;11:168.PubMedPubMedCentralCrossRefGoogle Scholar
  192. Ong’echa JM, et al. Polymorphic variability in the 3′ untranslated region (UTR) of IL12B is associated with susceptibility to severe anaemia in Kenyan children with acute Plasmodium falciparum malaria. BMC Genet. 2011;12:69.PubMedPubMedCentralCrossRefGoogle Scholar
  193. Osafo-Addo AD, et al. HLA-DRB1*04 allele is associated with severe malaria in northern Ghana. Am J Trop Med Hyg. 2008;78:251–5.PubMedCrossRefGoogle Scholar
  194. Othoro C, et al. A low interleukin-10 tumor necrosis factor-alpha ratio is associated with malaria anemia in children residing in a holoendemic malaria region in western Kenya. J Infect Dis. 1999;179:279–82.PubMedCrossRefGoogle Scholar
  195. Ouma C, et al. Haplotypes of IL-10 promoter variants are associated with susceptibility to severe malarial anemia and functional changes in IL-10 production. Hum Genet. 2008a;124:515–24.PubMedPubMedCentralCrossRefGoogle Scholar
  196. Ouma C, et al. Polymorphic variability in the interleukin (IL)-1beta promoter conditions susceptibility to severe malarial anemia and functional changes in IL-1beta production. J Infect Dis. 2008b;198:1219–26.PubMedPubMedCentralCrossRefGoogle Scholar
  197. Pandey KC, et al. Bacterially expressed and refolded receptor binding domain of Plasmodium falciparum EBA-175 elicits invasion inhibitory antibodies. Mol Biochem Parasitol. 2002;123:23–33.PubMedCrossRefGoogle Scholar
  198. Panigrahi S, et al. Genetic predisposition of variants in TLR2 and its co-receptors to severe malaria in Odisha, India. Immunol Res. 2016;64:291–302.PubMedCrossRefGoogle Scholar
  199. Parroche P, et al. Malaria hemozoin is immunologically inert but radically enhances innate responses by presenting malaria DNA to Toll-like receptor 9. Proc Natl Acad Sci USA. 2007;104:1919–24.PubMedCrossRefGoogle Scholar
  200. Pasvol G, et al. Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature. 1978;274:701–3.PubMedCrossRefGoogle Scholar
  201. Pasvol G, et al. Glycophorin as a possible receptor for Plasmodium falciparum. Lancet. 1982;2:947–50.PubMedCrossRefGoogle Scholar
  202. Pasvol G, et al. Glycophorin C and the invasion of red cells by Plasmodium falciparum. Lancet. 1984;1:907–8.PubMedCrossRefGoogle Scholar
  203. Patel SS, et al. The association of the glycophorin C exon 3 deletion with ovalocytosis and malaria susceptibility in the Wosera, Papua New Guinea. Blood. 2001;98:3489–91.PubMedCrossRefGoogle Scholar
  204. Pathirana SL, et al. ABO-blood-group types and protection against severe, Plasmodium falciparum malaria. Ann Trop Med Parasitol. 2005;99:119–24.PubMedCrossRefGoogle Scholar
  205. Pattanapanyasat K, et al. Impairment of Plasmodium falciparum growth in thalassemic red blood cells: further evidence by using biotin labeling and flow cytometry. Blood. 1999;93:3116–9.PubMedGoogle Scholar
  206. Pereira VA, et al. IL10A genotypic association with decreased IL-10 circulating levels in malaria infected individuals from endemic area of the Brazilian Amazon. Malar J. 2015;14:30.PubMedPubMedCentralCrossRefGoogle Scholar
  207. Peterson DS, Wellems TE. EBL-1, a putative erythrocyte binding protein of Plasmodium falciparum, maps within a favored linkage group in two genetic crosses. Mol Biochem Parasitol. 2000;105:105–13.PubMedCrossRefGoogle Scholar
  208. Phawong C, et al. Haplotypes of IL12B promoter polymorphisms condition susceptibility to severe malaria and functional changes in cytokine levels in Thai adults. Immunogenetics. 2010;62:345–56.PubMedPubMedCentralCrossRefGoogle Scholar
  209. Pichyangkul S, et al. Malaria blood stage parasites activate human plasmacytoid dendritic cells and murine dendritic cells through a Toll-like receptor 9-dependent pathway. J Immunol. 2004;172:4926–33.PubMedCrossRefGoogle Scholar
  210. Pravica V, et al. In vitro production of IFN-gamma correlates with CA repeat polymorphism in the human IFN-gamma gene. Eur J Immunogenet. 1999;26:1–3.PubMedPubMedCentralCrossRefGoogle Scholar
  211. Randall LM, et al. A study of the TNF/LTA/LTB locus and susceptibility to severe malaria in highland papuan children and adults. Malar J. 2010;9:302.PubMedPubMedCentralCrossRefGoogle Scholar
  212. Rihet P, et al. Malaria in humans: Plasmodium falciparum blood infection levels are linked to chromosome 5q31–q33. Am J Hum Genet. 1998;63:498–505.PubMedPubMedCentralCrossRefGoogle Scholar
  213. Rogge L, et al. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J Exp Med. 1997;185:825–31.PubMedPubMedCentralCrossRefGoogle Scholar
  214. Rosanas-Urgell A, et al. Reduced risk of Plasmodium vivax malaria in Papua New Guinean children with Southeast Asian ovalocytosis in two cohorts and a case-control study. PLoS Med. 2012;9:e1001305.PubMedPubMedCentralCrossRefGoogle Scholar
  215. Rowe A, et al. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect Immun. 1995;63:2323–6.PubMedPubMedCentralGoogle Scholar
  216. Rowe JA, et al. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature. 1997;388:292–5.PubMedCrossRefGoogle Scholar
  217. Rowe JA, et al. Blood group O protects against severe Plasmodium falciparum malaria through the mechanism of reduced rosetting. Proc Natl Acad Sci USA. 2007;104:17471–6.PubMedCrossRefGoogle Scholar
  218. Rowe JA, et al. Blood groups and malaria: fresh insights into pathogenesis and identification of targets for intervention. Curr Opin Hematol. 2009;16:480–7.PubMedPubMedCentralCrossRefGoogle Scholar
  219. Ruwende C, et al. Natural selection of hemi- and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature. 1995;376:246–9.PubMedCrossRefGoogle Scholar
  220. Sakuntabhai A, et al. Genetic determination and linkage mapping of Plasmodium falciparum malaria related traits in Senegal. PLoS One. 2008;3:e2000.PubMedPubMedCentralCrossRefGoogle Scholar
  221. Sanchez-Mazas A, et al. The HLA-B landscape of Africa: signatures of pathogen-driven selection and molecular identification of candidate alleles to malaria protection. Mol Ecol. 2017;26(22):6238–52.PubMedCrossRefGoogle Scholar
  222. Sawian CE, et al. Polymorphisms and expression of TLR4 and 9 in malaria in two ethnic groups of Assam, northeast India. Innate Immun. 2013;19:174–83.PubMedCrossRefGoogle Scholar
  223. Schroder NW, Schumann RR. Single nucleotide polymorphisms of Toll-like receptors and susceptibility to infectious disease. Lancet Infect Dis. 2005;5:156–64.PubMedCrossRefGoogle Scholar
  224. Serirom S, et al. Anti-adhesive effect of nitric oxide on Plasmodium falciparum cytoadherence under flow. Am J Pathol. 2003;162:1651–60.PubMedPubMedCentralCrossRefGoogle Scholar
  225. Serjeantson SW. A selective advantage for the Gerbich-negative phenotype in malarious areas of Papua New Guinea. P N G Med J. 1989;32:5–9.PubMedGoogle Scholar
  226. Shear HL, et al. Transgenic mice expressing human fetal globin are protected from malaria by a novel mechanism. Blood. 1998;92:2520–6.PubMedGoogle Scholar
  227. Sieburth D, et al. Assignment of genes encoding a unique cytokine (IL12) composed of two unrelated subunits to chromosomes 3 and 5. Genomics. 1992;14:59–62.PubMedCrossRefGoogle Scholar
  228. Sinha S, et al. Polymorphisms of TNF-enhancer and gene for FcgammaRIIa correlate with the severity of falciparum malaria in the ethnically diverse Indian population. Malar J. 2008;7:13.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Spadafora C, et al. Complement receptor 1 is a sialic acid-independent erythrocyte receptor of Plasmodium falciparum. PLoS Pathog. 2010;6:e1000968.PubMedPubMedCentralCrossRefGoogle Scholar
  230. Stevenson MM, Riley EM. Innate immunity to malaria. Nat Rev Immunol. 2004;4:169–80.PubMedCrossRefGoogle Scholar
  231. Stevenson MM, et al. Modulation of host responses to blood-stage malaria by interleukin-12: from therapy to adjuvant activity. Microbes Infect. 2001;3:49–59.PubMedCrossRefGoogle Scholar
  232. Szabo SJ, et al. Regulation of the interleukin (IL)-12R beta 2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J Exp Med. 1997;185:817–24.PubMedPubMedCentralCrossRefGoogle Scholar
  233. Taylor BS, et al. Multiple NF-kappaB enhancer elements regulate cytokine induction of the human inducible nitric oxide synthase gene. J Biol Chem. 1998;273: 15148–56.CrossRefGoogle Scholar
  234. Taylor SM, et al. Haemoglobinopathies and the clinical epidemiology of malaria: a systematic review and meta-analysis. Lancet Infect Dis. 2012;12:457–68.PubMedPubMedCentralCrossRefGoogle Scholar
  235. Tham WH, et al. Complement receptor 1 is the host erythrocyte receptor for Plasmodium falciparum PfRh4 invasion ligand. Proc Natl Acad Sci USA. 2010;107:17327–32.PubMedCrossRefGoogle Scholar
  236. Thompson JK, et al. A novel ligand from Plasmodium falciparum that binds to a sialic acid-containing receptor on the surface of human erythrocytes. Mol Microbiol. 2001;41:47–58.PubMedCrossRefGoogle Scholar
  237. Timmann C, et al. Genome-wide association study indicates two novel resistance loci for severe malaria. Nature. 2012;489:443–6.PubMedCrossRefGoogle Scholar
  238. Tishkoff SA, et al. Haplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance. Science. 2001;293: 455–62.CrossRefGoogle Scholar
  239. Tolia NH, et al. Structural basis for the EBA-175 erythrocyte invasion pathway of the malaria parasite Plasmodium falciparum. Cell. 2005;122:183–93.PubMedCrossRefGoogle Scholar
  240. Torre D, et al. Role of Th1 and Th2 cytokines in immune response to uncomplicated Plasmodium falciparum malaria. Clin Diagn Lab Immunol. 2002;9:348–51.PubMedPubMedCentralGoogle Scholar
  241. Tournamille C, et al. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet. 1995;10:224–8.PubMedCrossRefGoogle Scholar
  242. Trinchieri G. Interleukin-12: a cytokine at the interface of inflammation and immunity. Adv Immunol. 1998;70:83–243.PubMedCrossRefGoogle Scholar
  243. Trovoada Mde J, et al. NOS2 variants reveal a dual genetic control of nitric oxide levels, susceptibility to Plasmodium infection, and cerebral malaria. Infect Immun. 2014;82:1287–95.PubMedCrossRefGoogle Scholar
  244. Ubalee R, et al. Strong association of a tumor necrosis factor-alpha promoter allele with cerebral malaria in Myanmar. Tissue Antigens. 2001;58:407–10.PubMedCrossRefGoogle Scholar
  245. Udomsangpetch R, et al. The effects of hemoglobin genotype and ABO blood group on the formation of rosettes by Plasmodium falciparum-infected red blood cells. Am J Trop Med Hyg. 1993;48:149–53.PubMedCrossRefGoogle Scholar
  246. Uneke CJ. Plasmodium falciparum malaria and ABO blood group: is there any relationship? Parasitol Res. 2007;100:759–65.PubMedCrossRefGoogle Scholar
  247. Uyoga S, et al. Glucose-6-phosphate dehydrogenase deficiency and the risk of malaria and other diseases in children in Kenya: a case-control and a cohort study. Lancet Haematol. 2015;2:e437–44.PubMedPubMedCentralCrossRefGoogle Scholar
  248. Vafa M, et al. Associations between the IL-4 −590 T allele and Plasmodium falciparum infection prevalence in asymptomatic Fulani of Mali. Microbes Infect. 2007;9:1043–8.PubMedCrossRefGoogle Scholar
  249. Walley AJ, et al. Interleukin-1 gene cluster polymorphisms and susceptibility to clinical malaria in a Gambian case-control study. Eur J Hum Genet. 2004;12:132–8.PubMedCrossRefGoogle Scholar
  250. Wattavidanage J, et al. TNFalpha*2 marks high risk of severe disease during Plasmodium falciparum malaria and other infections in Sri Lankans. Clin Exp Immunol. 1999;115:350–5.PubMedPubMedCentralCrossRefGoogle Scholar
  251. Weatherall DJ, et al. Malaria and the red cell. Hematology Am Soc Hematol Educ Program. 2002;2002:35–57.CrossRefGoogle Scholar
  252. Williams TN, et al. The membrane characteristics of Plasmodium falciparum-infected and -uninfected heterozygous alpha(0)thalassaemic erythrocytes. Br J Haematol. 2002;118:663–70.PubMedCrossRefGoogle Scholar
  253. Wilson JN, et al. Analysis of IL10 haplotypic associations with severe malaria. Genes Immun. 2005;6:462–6.PubMedCrossRefGoogle Scholar
  254. Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–56.PubMedCrossRefGoogle Scholar
  255. Xiang L, et al. Quantitative alleles of CR1: coding sequence analysis and comparison of haplotypes in two ethnic groups. J Immunol. 1999;163:4939–45.PubMedGoogle Scholar
  256. Yamazaki A, et al. Human leukocyte antigen class I polymorphisms influence the mild clinical manifestation of Plasmodium falciparum infection in Ghanaian children. Hum Immunol. 2011;72:881–8.PubMedCrossRefGoogle Scholar
  257. Yim JJ, et al. The association between microsatellite polymorphisms in intron II of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun. 2006;7:150–5.PubMedCrossRefPubMedCentralGoogle Scholar
  258. Zanella A, Bianchi P. Red cell pyruvate kinase deficiency: from genetics to clinical manifestations. Baillieres Best Pract Res Clin Haematol. 2000;13:57–81.PubMedCrossRefPubMedCentralGoogle Scholar
  259. Zanella A, et al. Molecular characterization of PK-LR gene in pyruvate kinase-deficient Italian patients. Blood. 1997;89:3847–52.PubMedGoogle Scholar
  260. Zhang D, Pan W. Evaluation of three Pichia pastoris-expressed Plasmodium falciparum merozoite proteins as a combination vaccine against infection with blood-stage parasites. Infect Immun. 2005;73:6530–6.PubMedPubMedCentralCrossRefGoogle Scholar
  261. Zhang L, et al. Polymorphisms in genes of interleukin 12 and its receptors and their association with protection against severe malarial anaemia in children in western Kenya. Malar J. 2010;9:87.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stanford University School of MedicineStanfordUSA