Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Data Exchange

  • Lucian Popa
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_960

Synonyms

Data migration; Data translation; Data transformation

Definition

Data exchange is the problem of materializing an instance of a target schema, given an instance of a source schema and a specification of the relationship between the source schema and the target schema. More precisely, a data exchange setting is a quadruple of the form (S, T, Σst, Σt), where S is the source schema, T is the target schema, Σst is a schema mapping that expresses constraints between S and T, and Σt is a set of constraints on T. Such a setting gives rise to the following data exchange problem: given an instance I over the source schema S, find an instance J over the target schema T such that I and J together satisfy the schema mapping Σst, and J satisfies the target constraints Σt. Such an instance J is called a solution for I in the data exchange setting. In general, many different solutions for an instance Imay exist. The main focus of the data exchange research is to study the space of all...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Arenas M, Libkin L. XML data exchange: consistency and query answering. In: Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2005. p. 13–24.Google Scholar
  2. 2.
    Beeri C, Vardi MY. A proof procedure for data dependencies. J ACM. 1984;31(4):718–41.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Bernstein PA, Melnik S. Model management 2.0: manipulating richer mappings. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2007. p. 1–12.Google Scholar
  4. 4.
    Chandra AK, Merlin PM. Optimal implementation of conjunctive queries in relational data bases. In: Proceedings of the 9th Annual ACM Symposium on Theory of Computing; 1977. p. 77–90.Google Scholar
  5. 5.
    Deutsch A, Tannen V. XML queries and constraints, containment and reformulation. Theor Comput Sci. 2005;336(1):57–87.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Fagin R. Horn clauses and database dependencies. J ACM. 1982;29(4):952–85.CrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    Fagin R. Inverting schema mappings. ACM Trans Database Syst. 2007;32(4):24.CrossRefzbMATHGoogle Scholar
  8. 8.
    Fagin R, Kolaitis PG, Miller RJ, Popa L. Data exchange: semantics and query answering. Theor Comput Sci. 2005;336(1):89–124.CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Fagin R, Kolaitis PG, Popa L. Data exchange: getting to the core. ACM Trans Database Syst. 2005;30(1):174–210.CrossRefzbMATHGoogle Scholar
  10. 10.
    Fagin R, Kolaitis PG, Popa L, Tan W-C. Composing schema mappings: second-order dependencies to the rescue. ACM Trans Database Syst. 2005;30(4):994–1055.CrossRefGoogle Scholar
  11. 11.
    Fuxman A, Kolaitis PG, Miller RJ, Tan W-C. Peer data exchange. ACM Trans Database Syst. 2006;31(4):1454–98.CrossRefGoogle Scholar
  12. 12.
    Gottlob G. Computing cores for data exchange: new algorithms and practical solutions. In: Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2005.Google Scholar
  13. 13.
    Gottlob G, Nash A. Data exchange: computing cores in polynomial time. In: Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2006. p. 40–9.Google Scholar
  14. 14.
    Hell P, Nešetřil J. The core of a graph. Discret Math. 1992;109:117–26.CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    Kolaitis PG, Panttaja J, Tan WC. The complexity of data exchange. In: Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2006. p. 30–9.Google Scholar
  16. 16.
    Lenzerini M. Data integration: a theoretical perspective. In: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2002. p. 233–46.Google Scholar
  17. 17.
    Libkin L. Data exchange and incomplete information. In: Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2006. p. 60–9.Google Scholar
  18. 18.
    Miller RJ, Haas LM, Hernández MA. Schema mapping as query discovery. In: Proceedings of the 26th International Conference on Very Large Data Bases; 2000. p. 77–88.Google Scholar
  19. 19.
    Nash A, Bernstein PA, Melnik S. Composition of mappings given by embedded dependencies. ACM Trans Database Syst. 2007;32(1):4.CrossRefGoogle Scholar
  20. 20.
    Popa L, Velegrakis Y, Miller RJ, Hernández MA, Fagin R. Translating web data. In: Proceedings of the 28th International Conference on Very Large Data Bases; 2002. p. 598–609.CrossRefGoogle Scholar
  21. 21.
    Shu NC, Housel BC, Taylor RW, Ghosh SP, Lum VY. EXPRESS: a data EXtraction, processing, and REStructuring system. ACM Trans Database Syst. 1977;2(2):134–74.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IBM Almaden Research CenterSan JoseUSA

Section editors and affiliations

  • Renée J. Miller
    • 1
  1. 1.Dept. of Computer ScienceUniversity of Toronto, Department of Computer ScienceTorontoCanada