Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Data, Text, and Web Mining in Healthcare

  • Elizabeth S. Chen
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_94

Synonyms

Data mining; Text data mining; Web content mining; Web data mining; Web mining; Web structure mining; Web usage mining

Definition

The healthcare domain presents numerous opportunities for extracting information from heterogeneous sources ranging from structured data (e.g., laboratory results and diagnoses) to unstructured data (e.g., clinical documents such as discharge summaries) to usage data (e.g., audit logs that record user activity for clinical applications). To accommodate the unique characteristics of these disparate types of data and support the subsequent use of extracted information, several existing techniques have been adapted and applied including Data Mining, Text Mining, and Web Mining [1]. This entry provides an overview of each of these mining techniques (with a focus on Web usage mining) and example applications in healthcare.

Historical Background

Given the exponential growth of data in all domains, there has been an increasing amount of work focused on the...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Data Mining, Web Mining, Text Mining, Knowledge Discovery. www.kdnuggets.com
  2. 2.
    Dunham M. Data mining introductory and advanced topics. Englewood Cliffs: Prentice-Hall; 2003.Google Scholar
  3. 3.
    Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R. Advances in knowledge discovery and data mining. Menlo Park: AAAI/MIT; 1996.Google Scholar
  4. 4.
    Chen H, Fuller S, Friedman C, Hersh W. Knowledge management and data mining in biomedicine. New York: Springer; 2005.Google Scholar
  5. 5.
    Hearst M. Untangling text data mining. In: Proceedings of the 27th Annual Meeting of the Association for Computational Linguistics; 1999.Google Scholar
  6. 6.
    Konchady M. Text mining application programming. Charles River Media Boston; 2006 2.Google Scholar
  7. 7.
    Scime A. Web mining: applications and techniques. Hershey: Idea Group Inc.; 2005.CrossRefGoogle Scholar
  8. 8.
    Srivastava J, Cooley R, Deshpande M, Tan P. Web usage mining: discovery and applications of usage patterns from web data. SIGKDD Explor. 2000;1(2):12–23.CrossRefGoogle Scholar
  9. 9.
    Kosala R, Blockeel H. Web mining research: a survey. SIGKDD Explor. 2000;2(1):1–15.CrossRefGoogle Scholar
  10. 10.
    Cooley R, Mobasher B, Srivastava J. Web mining: information and pattern discovery on the World Wide Web. In: Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence; 1997. p. 558–67.Google Scholar
  11. 11.
    Doddi S, Marathe A, Ravi SS, Torney DC. Discovery of association rules in medical data. Med Inform Internet Med. 2001;26(1):25–33.CrossRefGoogle Scholar
  12. 12.
    Prather JC, Lobach DF, Goodwin LK, Hales JW, Hage ML, Hammond WE. Medical data mining: knowledge discovery in a clinical data warehouse. In: Proceedings of the AMIA Annual Fall Symposium; 1997. p. 101–5.Google Scholar
  13. 13.
    Mullins IM, Siadaty MS, Lyman J, Scully K, Garrett CT, Greg MW, et al. Data mining and clinical data repositories: insights from a 667,000 patient data set. Comput Biol Med. 2006;36(12):1351–77.CrossRefGoogle Scholar
  14. 14.
    Hripcsak G, Bakken S, Stetson PD, Patel VL. Mining complex clinical data for patient safety research: a framework for event discovery. J Biomed Inform. 2003;36(1–2):120–30.CrossRefGoogle Scholar
  15. 15.
    Cao H, Markatou M, Melton GB, Chiang MF, Hripcsak G. Mining a clinical data warehouse to discover disease-finding associations using co-occurrence statistics. In: Proceedings of the AMIA Annual Symposium; 2005. p. 106–10.Google Scholar
  16. 16.
    Heinze DT, Morsch ML, Holbrook J. Mining free-text medical records. In: Proceedings of the AMIA Symposium; 2001. p. 254–8.Google Scholar
  17. 17.
    Eirinaki M, Vazirgiannis M. Web mining for web personalization. ACM Trans Internet Technol. 2003;3(1):1–27.CrossRefGoogle Scholar
  18. 18.
    Pierrakos D, Paliouras G, Papatheodorou C, Spyropoulos C. Web usage mining as a tool for personalization: a survey. User Model User-Adap. 2003;13(4):311–72.CrossRefGoogle Scholar
  19. 19.
    Mobasher B, Cooley R, Srivastava J. Automatic personalization based on web usage mining. Commun ACM. 2000;43(8):142–51.CrossRefGoogle Scholar
  20. 20.
    Malin BA. Correlating web usage of health information with patient medical data. In: Proceedings of the AMIA Symposium; 2002. p. 484–8.Google Scholar
  21. 21.
    Johnson HA, Wagner MM, Hogan WR, Chapman W, Olszewski RT, Dowling J, et al. Analysis of web access logs for surveillance of influenza. In: Proceedings of the 11th World Congress on Medical Informatics; 2004. p. 1202.Google Scholar
  22. 22.
    Heino J, Toivonen H. Automated detection of epidemics from the usage logs of a physicians’s; reference database. In: Principles of Data Mining and Knowledge Discovery, 7th European Conference; 2003. p. 180–91.CrossRefGoogle Scholar
  23. 23.
    Zhang D, Zambrowicz C, Zhou H, Roderer N. User information seeking behavior in a medical web portal environment: a preliminary study. J Am Soc Inf Sci Technol. 2004;55(8):670–84.CrossRefGoogle Scholar
  24. 24.
    Rozic-Hristovski A, Hristovski D, Todorovski L. Users’ information-seeking behavior on a medical library Website. J Med Libr Assoc. 2002;90(2):210–7.Google Scholar
  25. 25.
    Bracke PJ. Web usage mining at an academic health sciences library: an exploratory study. J Med Libr Assoc. 2004;92(4):421–8.Google Scholar
  26. 26.
    Chen ES, Cimino JJ. Automated discovery of patient-specific clinician information needs using clinical information system log files. In: Proceedings of the AMIA Annual Symposium; 2003. p. 145–9.Google Scholar
  27. 27.
    Chen ES, Cimino JJ. Patterns of usage for a web-based clinical information system. In: Proceedings of the 11th World Congress on Medical Informatics; 2004. p. 18–22.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Partners HealthCare SystemBostonUSA

Section editors and affiliations

  • Vipul Kashyap
    • 1
  1. 1.Director, Clinical ProgramsCIGNA HealthcareBloomfieldUSA