Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

SPARQL

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_80803

Synonyms

SPARQL Protocol and RDF Query Language; RDF query language

Scientific Fundamentals

Semantic Web, Query Language

Definition

SPARQL (a recursive acronym for SPARQL Protocol and RDF Query Language), proposed by the World Wide Web Consortium (W3C), is a structured query language that retrieves and manipulates data stored in RDF (Resource Description Framework) format. SPARQL can be used to express queries across diverse data sources, whether the data is stored natively as RDF or viewed as RDF via middleware. The results of SPARQL queries can be result sets or RDF graphs.

Historical Background

SPARQL 1.0 became an official W3C Recommendation on 15 January 2008. On 26 March 2013, the SPARQL Working Group has produced a new W3C Recommendation SPARQL 1.1 that introduces more features to 2008 version. SPARQL is emerging as the de facto RDF query language. Prior to SPARQL, there were some other popular RDF query languages, such as RQL, SeRQL, TRIPLE, RDQL, and so on. The comprehensive...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abadi DJ, Marcus A, Madden S, Hollenbach K. Sw-store: a vertically partitioned DBMS for semantic web data management. VLDB J. 2009;18(2): 385–406.CrossRefGoogle Scholar
  2. 2.
    Bornea MA, Dolby J, Kementsietsidis A, Srinivas K, Dantressangle P, Udrea O, Bhattacharjee B. Building an efficient RDF store over a relational database. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2013. p. 121–32.Google Scholar
  3. 3.
    Broekstra J, Kampman A, van Harmelen F. Sesame: a generic architecture for storing and querying RDF and RDF schema. In: Proceedings of the 1st International Semantic Web Conference; 2002. p. 54–68.Google Scholar
  4. 4.
    T. W. S. W. Group. Sparql 1.1 overview. https://www.w3.org/TR/rdf-sparql-query/, 21 March 2013.
  5. 5.
    Haase P, Broekstra J, Eberhart A, Volz R. A comparison of RDF query languages. ISWC. 2004: 502–17.Google Scholar
  6. 6.
    Neumann T, Weikum G. The RDF-3X engine for scalable management of RDF data. VLDB J. 2010;19(1):91–113.CrossRefGoogle Scholar
  7. 7.
    Özsu MT. A survey of RDF data management systems. Frontiers of Computer Science. 2016;10(3):418–432.CrossRefGoogle Scholar
  8. 8.
    Pérez J, Arenas M, Gutierrez C. Semantics and complexity of SPARQL. ACM Trans. Database Syst. 2009;34(3).CrossRefGoogle Scholar
  9. 9.
    Udrea O, Pugliese A, Subrahmanian VS. Grin: a graph based RDF index. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence; 2007. p. 1465–70.Google Scholar
  10. 10.
    Weiss C, Karras P, Bernstein A. Hexastore: sextuple indexing for semantic web data management. Proc VLDB Endow. 2008;1(1):1008–1019.CrossRefGoogle Scholar
  11. 11.
    Wilkinson K. Jena property table implementation. Technical Report HPL-2006-140, HP Laboratories Palo Alto, 2006.Google Scholar
  12. 12.
    Zou L, Mo J, Chen L, Özsu MT, Zhao D. gstore: answering SPARQL queries via subgraph matching. Proc VLDB Endow. 2011;4(8):482–493.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Computer Science and TechnologyPeking UniversityBeijingChina