Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Indexing Uncertain Data

  • Sunil Prabhakar
  • Reynold Cheng
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_80740

Synonyms

Indexing imprecise daa; Indexing probabilistic data

Definition

The indexing of an uncertain database refers to the data structure constructed on top of imprecise data, with the goal of supporting efficient and scalable execution of probabilistic queries on them.

Historical Background

Uncertainty is prevalent in many important and emerging applications, such as spatial databases, sensor networks, and biological applications. For example, in the Global-Positioning System (GPS), the location collected from the GPS-enabled devices (e.g., PDAs) often has measurement and sampling error [20, 17]. The location data transmitted to the system may further encounter some network delay. Hence, the data collected in these applications are often imprecise, inaccurate, and stale. Similar problems also occur in sensor networks and RFID monitoring systems. Consider a habitat monitoring system used in scientific applications, where data such as temperature, humidity, and wind speed are acquired...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Böhm C, Pryakhin A, Schubert M. The gauss-tree: efficient object identification in databases of probabilistic feature vectors. In: Proceedings of the 22nd International Conference on Data Engineering; 2006.Google Scholar
  2. 2.
    Chen J, Cheng R. Efficient evaluation of imprecise location-dependent queries. In: Proceedings of the 23rd International Conference on Data Engineering; 2007.Google Scholar
  3. 3.
    Cheng R, Kalashnikov D, Prabhakar S. Evaluating probabilistic queries over imprecise data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2003. p. 551–62.Google Scholar
  4. 4.
    Cheng R, Kalashnikov DV, Prabhakar S. Querying imprecise data in moving object environments. IEEE Trans Knowl Data Eng. 2004;16(9):1112–27.CrossRefGoogle Scholar
  5. 5.
    Cheng R, Xia Y, Prabhakar S, Shah R, Vitter JS. Efficient indexing methods for probabilistic threshold queries over uncertain data. In: Proceedings of the 30th International Conference on Very Large Data Bases; 2004. p. 876–87.CrossRefGoogle Scholar
  6. 6.
    Cheng R, Singh S, Prabhakar S, Shah R, Vitter J, Xia Y. Efficient join processing over uncertain data. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management; 2006.Google Scholar
  7. 7.
    Cheng R, Chen J, Mokbel M, Chow C. Probabilistic verifiers: evaluating constrained nearest-neighbor queries over uncertain data. In: Proceedings of the 24th International Conference on Data Engineering; 2008.Google Scholar
  8. 8.
    Cheng R, Xie X, Yiu ML, Chen J, Sun L. UV-diagram: a voronoi diagram for uncertain data. In: Proceedings of the 26th International Conference on Data Engineering; 2010.Google Scholar
  9. 9.
    Dai X, Yiu ML, Mamoulis N, Tao Y, Vaitis M. Probabilistic spatial queries on existentially uncertain data. In: Proceedings of the 9th International Symposium Advances in Spatial and Temporal Databases; 2005. p. 400–17.CrossRefGoogle Scholar
  10. 10.
    de Berg M, van Kreveld M, Overmars M, Schwarzkopf O. Computational geometry: algorithms and applications. Berlin: Springer; 1997.zbMATHCrossRefGoogle Scholar
  11. 11.
    Deshpande A, Guestrin C, Madden S, Hellerstein J, Hong W. Model-driven data acquisition in sensor networks. In: Proceedings of the 30th International Conference on Very Large Data Bases; 2004.Google Scholar
  12. 12.
    Kriegel H, Kunath P, Renz M. Probabilistic nearest-neighbor query on uncertain objects. In: Proceedings of the 12th International Conference on Database Systems for Advanced Applications; 2007. p. 337–48.Google Scholar
  13. 13.
    Ljosa V, Singh A. APLA: indexing arbitrary probability distributions. In: Proceedings of the 23rd International Conference on Data Engineering; 2007. p. 946–55.Google Scholar
  14. 14.
    Okabe A, Boots B, Sugihara K, Chiu S. Spatial tessellations: concepts and applications of voronoi diagrams. 2nd ed. Chichester: Wiley; 2000.zbMATHCrossRefGoogle Scholar
  15. 15.
    Parker A, Subrahmanian V, Grant J. A logical formulation of probabilistic spatial databases. IEEE Trans Knowl Data Eng. 2007;19(11):1541–56.CrossRefGoogle Scholar
  16. 16.
    Pei J, Jiang B, Lin X, Yuan Y. Probabilistic skylines on uncertain data. In: Proceedings of the 33rd International Conference on Very Large Data Bases; 2007.Google Scholar
  17. 17.
    Pfoser D, Jensen C. Capturing the uncertainty of moving-objects representations. In: Proceedings of the 11th International Conference on Scientific and Statistical Database Management; 1999.Google Scholar
  18. 18.
    Singh S, Mayfield C, Prabhakar S, Shah R, Hambrusch S. Indexing uncertain whether data. In: Proceedings of the 23rd International Conference on Data Engineering; 2007.Google Scholar
  19. 19.
    Singh S, Mayfield C, Shah R, Prabhakar S, Hambrusch S, Neville J, Cheng R. Database support for probabilistic attributes and tuples. In: Proceedings of the 24th International Conference on Data Engineering; 2008.Google Scholar
  20. 20.
    Sistla PA, Wolfson O, Chamberlain S, Dao S. Querying the uncertain position of moving objects. In: Temporal databases: research and practice. Berlin/New York: Springer; 1998.Google Scholar
  21. 21.
    Tao Y, Cheng R, Xiao X, Ngai WK, Kao B, Prabhakar S. Indexing multi-dimensional uncertain data with arbitrary probability density functions. In: Proceedings of the 31st International Conference on Very Large Data Bases; 2005. p. 922–33.Google Scholar
  22. 22.
    Tao Y, Xiao X, Cheng R. Range search on multidimensional uncertain data. ACM Trans Database Syst. 2007;32(3):15.CrossRefGoogle Scholar
  23. 23.
    Xie X, Cheng R, Yiu ML, Sun L, Chen J. UV-diagram: a voronoi diagram for uncertain spatial databases. VLDB J. 2013;22(3):319–44.CrossRefGoogle Scholar
  24. 24.
    Xie X, Jin P, Yiu M-L, Du J, Yuan M, Jensen C. Enabling scalable geographic service sharing with weighted imprecise voronoi cells. IEEE Trans Knowl Data Eng. 2016;28(2):439–53.CrossRefGoogle Scholar
  25. 25.
    Zhang P, Cheng R, Mamoulis N, Renz M, Zuefle A, Tang Y, Emrich T. Voronoi-based nearest neighbor search for multi-dimensional uncertain databases. In: Proceedings of the 29th International Conference on Data Engineering; 2013.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA
  2. 2.Computer ScienceThe University of Hong KongHong KongChina