Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Uncertain Data Streams

  • Xiang Lian
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_80691

Synonyms

Probabilistic data streams; Probabilistic streams

Definition

An uncertain data stream T is an ordered sequence of elements, denoted as T[1], T[2], …, where each element T[i] (for i = 1, 2, …) is a d-dimensional uncertain object that arrives at timestamp i. In the uncertain data stream T, each uncertain object T[i] resides in an uncertainty region in a d-dimensional data space. Within the uncertainty region, the location of object T[i] follows a probabilistic distribution, which can be represented by discrete and mutually exclusive samples sj[i] (for 1 ≤ jl), associated with their existence probabilities sj[i].p, where \(\sum _{j=1}^l s_j[i].p \leq 1\)

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Böhm C, Pryakhin A, Schubert M. The Gauss-tree: efficient object identification in databases of probabilistic feature vectors. In: Proceedings of the 22nd International Conference on Data Engineering; 2006. p. 9.Google Scholar
  2. 2.
    Börzsönyi S, Kossmann D, Stocker K. The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering; 2001. p. 421–30.Google Scholar
  3. 3.
    Burdick D, Deshpande PM, Jayram TS, Ramakrishnan R, Vaithyanathan S. OLAP over uncertain and imprecise data. VLDB J. 2007;16(1):123–44.CrossRefGoogle Scholar
  4. 4.
    Chen L, Özsu MT, Oria V. Robust and fast similarity search for moving object trajectories. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2005. p. 491–502.Google Scholar
  5. 5.
    Cheng R, Kalashnikov D, Prabhakar S. Querying imprecise data in moving object environments. IEEE Trans Knowl Data Eng. 2004;16:1112–27.CrossRefGoogle Scholar
  6. 6.
    Cheng R, Kalashnikov DV, Prabhakar S. Evaluating probabilistic queries over imprecise data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2003. p. 551–62.Google Scholar
  7. 7.
    Cheng R, Zhang Y, Bertino E, Prabhakar S. Preserving user location privacy in mobile data management infrastructures. In: Proceedings of the 6th International Conference on Privacy Enhancing Technologies; 2006. p. 393–412.CrossRefGoogle Scholar
  8. 8.
    Cormode G, Garofalakis M. Sketching probabilistic data streams. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2007. p. 281–92.Google Scholar
  9. 9.
    Dalvi NN, Suciu D. Efficient query evaluation on probabilistic databases. VLDB J. 2007;16(4):523–44.CrossRefGoogle Scholar
  10. 10.
    Ding X, Lian X, Chen L, Jin H. Continuous monitoring of skylines over uncertain data streams. Inf Sci. 2012;184(1):196–214.CrossRefGoogle Scholar
  11. 11.
    Faradjian A, Gehrke J, Bonnet P. GADT: a probability space ADT for representing and querying the physical world. In: Proceedings of the 18th International Conference on Data Engineering; 2002. p. 201–11.Google Scholar
  12. 12.
    Jayram TS, Kale S, Vee E. Efficient aggregation algorithms for probabilistic data. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms; 2007. p. 346–55.Google Scholar
  13. 13.
    Jeffery SR, Franklin MJ, Garofalakis M. An adaptive RFID middleware for supporting metaphysical data independence. VLDB J. 2008;17(2):265–89.CrossRefGoogle Scholar
  14. 14.
    Jin C, Yi K, Chen L, Yu JX, Lin X. Sliding-window top-k queries on uncertain streams. In: Proceedings of the 34th International Conference on Very Large Data Bases; 2008. p. 301–12.CrossRefGoogle Scholar
  15. 15.
    Ke Y, Sukthankar R, Huston L. An efficient parts-based near-duplicate and sub-image retrieval system. In: Proceedings of the 12th ACM International Conference on Multimedia; 2004. p. 869–76.Google Scholar
  16. 16.
    Lian X, Chen L. Efficient pattern matching over uncertain data streams. HKIE Trans. 2009;16(4):9–18.Google Scholar
  17. 17.
    Lian X, Chen L. Similarity join processing on uncertain data streams. IEEE Trans Knowl Data Eng. 2011;23(11):1718–34.CrossRefGoogle Scholar
  18. 18.
    Lian X, Chen L, Yu JX. Pattern matching over cloaked time series. In: Proceedings of the 24th International Conference on Data Engineering; 2008. p. 1462–64.Google Scholar
  19. 19.
    Ljosa V, Singh AK. APLA: indexing arbitrary probability distributions. In: Proceedings of the 23rd International Conference on Data Engineering; 2007. p. 247–58.Google Scholar
  20. 20.
    Mokbel MF, Chow CY, Aref WG. The new casper: query processing for location services without compromising privacy. In: Proceedings of the 32nd International Conference on Very Large Data Bases; 2006. p. 763–74.Google Scholar
  21. 21.
    Papadimitriou S, Li F, Kollios G, Yu PS. Time series compressibility and privacy. In: Proceedings of the 33rd International Conference on Very Large Data Bases; 2007. p. 459–70.Google Scholar
  22. 22.
    Zhang Q, Li F, Yi K. Finding frequent items in probabilistic data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2008. p. 819–32.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceKent State UniversityKentUSA