Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Ranked XML Processing

  • Amélie Marian
  • Ralf Schenkel
  • Martin Theobald
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_778

Synonyms

Aggregation and threshold algorithms for XML; Approximate XML querying; Top-k XML query processing

Definition

When querying collections of XML documents with heterogeneous or complex schemas, existing query languages like XPath or XQuery with their exact-match semantics are often not the perfect choice. Such exact querying languages will typically miss many relevant results that do not conform to the strict formulation of the query.

Top-k query processing for XML data, which focuses on finding the k top-ranked XML elements to an XPath (or XQuery) query with full-text search predicates, is a particularly appropriate query model for querying semi-structured data when the actual content or structure of the underlying data is not fully known. Challenges in processing top-k queries over XML data include scoring individual answers based on how closely they match the query, supporting IR-style vague search over both content and structure, and ranking the kbest answers in an...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Amer-Yahia S, Cho S, Srivastava D. Tree pattern relaxation. In: Advances in Database Technology, Proceedings of the 8th International Conference on Extending Database Technology; 2002. p. 496–513.CrossRefGoogle Scholar
  2. 2.
    Amer-Yahia S, Curtmola E, Deutsch A. Flexible and efficient XML search with complex full-text predicates. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2006. p. 575–86.Google Scholar
  3. 3.
    Amer-Yahia S, Koudas N, Marian A, Srivastava D, Toman D. Structure and content scoring for XML. In: Proceedings of the 31st International Conference on Very Large Data Bases; 2005.Google Scholar
  4. 4.
    Amer-Yahia S, Lakshmanan LVS, Pandit S. FleXPath: flexible structure and full-text querying for XML. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2004. p. 83–94.Google Scholar
  5. 5.
    Amer-Yahia S, Lalmas M. XML search: languages, INEX and scoring. ACM SIGMOD Rec. 2006;35(4):16–23.CrossRefGoogle Scholar
  6. 6.
    Bruno N, Koudas N, Srivastava D. Holistic twig joins: optimal XML pattern matching. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2002. p. 310–21.Google Scholar
  7. 7.
    Cohen S, Mamou J, Kanza Y, Sagiv Y. XSEarch: a semantic search engine for XML. In: Proceedings of the 29th International Conference on Very Large Data Bases; 2003. p. 45–56.CrossRefGoogle Scholar
  8. 8.
    Fagin R, Lotem A, Naor M. Optimal aggregation algorithms for middleware. J Comput Syst Sci. 2003;66(4):614–56.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fuhr N, Großjohann K. XIRQL: a query language for information retrieval in XML documents. In: Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval; 2001. p. 172–80Google Scholar
  10. 10.
    Grust T, van Keulen M, Teubner J. Staircase join: teach a relational DBMS to watch its (axis) steps. In: Proceedings of the 29th International Conference on Very Large Data Bases; 2003. p. 524–5.CrossRefGoogle Scholar
  11. 11.
    Guo L, Shao F, Botev C, Shanmugasundaram J. XRank: ranked keyword search over XML documents. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2003.Google Scholar
  12. 12.
    Kaushik R, Krishnamurthy R, Naughton JF, Ramakrishnan R. On the integration of structure indexes and inverted lists. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2004.Google Scholar
  13. 13.
    Kilpeläinen P, Mannila H. Retrieval from hierarchical texts by partial patterns. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval; 1993. p. 214–22.Google Scholar
  14. 14.
    Marian A, Amer-Yahia S, Koudas N, Srivastava D. Adaptive processing of top-k queries in XML. In: Proceedings of the 21st International Conference on Data Engineering; 2005. p. 162–73.Google Scholar
  15. 15.
    Schenkel R, Theobald A, Weikum G. Semantic similarity search on semistructured data with the XXL search engine. Inf Retr. 2005;8(4):521–45.CrossRefGoogle Scholar
  16. 16.
    Schlieder T. Schema-driven evaluation of approximate tree-pattern queries. In: Advances in database technology, proceedings of the 8th international conference on extending database technology. 2002. p. 514–32.CrossRefGoogle Scholar
  17. 17.
    Theobald M, Schenkel R, Weikum G. An efficient and versatile query engine for TopX search. In: Proceedings of the 31st International Conference on Very Large Data Bases; 2005.Google Scholar
  18. 18.
    Theobald M, Schenkel R, Weikum G. The TopX DB&IR engine. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2007. p. 1141–3.Google Scholar
  19. 19.
    Theobald A, Weikum G. Adding relevance to XML. In: Proceedings of the 3rd International Workshop on the World Wide Web and Databases; 2000. p. 105–24.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amélie Marian
    • 1
  • Ralf Schenkel
    • 2
  • Martin Theobald
    • 3
    • 4
  1. 1.Computer Science DepartmentRutgers UniversityNJUSA
  2. 2.Campus II Department IV – Computer Science, Professorship for databases and information systemsUniversity of TrierTrierGermany
  3. 3.Institute of Databases and Information Systems (DBIS)Ulm UniversityUlmGermany
  4. 4.Stanford UniversityStanfordUSA

Section editors and affiliations

  • Sihem Amer-Yahia
    • 1
  1. 1.Laboratoire d'Informatique de GrenobleCNRS and LIGGrenobleFrance