Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Ontologies and Life Science Data Management

  • Robert Stevens
  • Phillip Lord
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_631

Synonyms

Knowledge management

Definition

Biology is a knowledge-rich discipline. Much of bioinformatics can, therefore, be characterized as knowledge management: organizing, storing and representing that knowledge to enable search, reuse and computation.

Most of the knowledge of biology is categorical; statements such as “fish gotta swim, birds gotta fly” cannot be easily represented as mathematical or statistical relationships. These statements can, however, be formalized using ontologies: a form of model which represents the key concepts of a domain.

Ontologies are now widely used in bioinformatics for a variety of tasks, enabling integration and management of multiple data or knowledge sources, and providing a structure for new knowledge as it is created.

Historical Background

Biological knowledge is highly complex. It is characterized not by the large size of the data sets that it uses, but by the large number of data types; from relatively simple data such as raw nucleotide...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Altman R, Bada M, Chai X, Whirl CM, Chen R, Abernethy N. RiboWeb: an ontology-based system for collaborative molecular biology. IEEE Intell Syst. 1999;14(5):68–76.CrossRefGoogle Scholar
  2. 2.
    Baader F, Calvanese D, McGuinness D, Nardi D, Patel-Schneider P, editors. The description logic handbook: theory, implementation and applications. Cambridge: Cambridge University Press; 2003.zbMATHGoogle Scholar
  3. 3.
    Bodenreider O, Stevens R. Bio-ontologies: current trends and future directions. Brief Bioinform. 2006;7(3):256–74.CrossRefGoogle Scholar
  4. 4.
    Brenchley R, Tariq H, McElhinney H, Szoor B, Stevens R, Matthews K, Tabernero L. The TriTryp Phosphatome analysis of the protein phosphatase catalytic domains. BMC Genome. 2007;8(1):434.CrossRefGoogle Scholar
  5. 5.
    Davidson S, Overton C, Buneman P. Challenges in integrating biological data sources. J Comput Biol. 1995;2(4):557–72.CrossRefGoogle Scholar
  6. 6.
    Fernàndez-Lòpez M, Gòmez-Pèrez A. Overview and analysis of methodologies for building ontologies. Knowl Eng Rev. 2002;17(2):129–56.CrossRefGoogle Scholar
  7. 7.
    Goble CA, Stevens R, Ng G, Bechhofer S, Paton NW, Baker P, Peim M, Brass A. Transparent access to multiple bioinformatics information sources. IBM Syst J, Special issue on deep computing for the life sciences. 2001;40(2e):532–52.CrossRefGoogle Scholar
  8. 8.
    Karp P, Riley M, Saier M, Paulsen I, Paley S, Pellegrini-Toole A. The EcoCyc and metacyc databases. Nucleic Acids Res. 2000;28(1):56–9.CrossRefGoogle Scholar
  9. 9.
    Lord PW, Stevens R, Brass A, Goble CA. Investigating semantic similarity measures across the gene ontology: the relationship between sequence and annotation. Bioinformatics. 2003;19(10):1275–83.CrossRefGoogle Scholar
  10. 10.
    Luciano J. PAX of mind for pathway researchers. Drug Discov Today. 2005;10(13):937–42.CrossRefGoogle Scholar
  11. 11.
    Ringland G, Duce D. Approaches to knowledge representation: an introduction knowledge-based and expert systems series. Chichester: Wiley; 1988.Google Scholar
  12. 12.
    Rosse C, Mejino JLV. A reference ontology for bioinformatics: the foundational model of anatomy. J Biomed Inform. 2003;36(6):478–500.CrossRefGoogle Scholar
  13. 13.
    Taylor C, Paton N, Lilley K, Binz P, Julian Jr R, Jones A, Zhu W, Apweiler R, Aebersold R, Deutsch E, Dunn M, Heck A, Leitner A, Macht M, Mann M, Martens L, Neubert T, Patterson S, Ping P, Seymour S, Souda P, Tsugita A, Vandekerckhove J, Vondriska T, Whitelegge J, Wilkins M, Xenarios I, Yates 3rd J, Hermjakob H. The Minimum Information About a Proteomics Experiment (MIAPE). Nat Biotechnol. 2007;25(8):887–93.CrossRefGoogle Scholar
  14. 14.
    Ashburner M et al. The gene ontology consortium gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–9.CrossRefGoogle Scholar
  15. 15.
    Wang H, Azuaje F, Bodenreider O, Dopazo J. Gene expression correlation and gene ontology-based similarity: an assessment of quantitative relationships. In: Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology; 2004. p. 25–31.Google Scholar
  16. 16.
    Whetzel P, Brinkman R, Causton H, Fan L, Field D, Fostel J, Fragaso G, Gray T, Heiskanen M, Hernandez-Boussard T, Morrison N, Parkinson H, Rocca-Serra P, Sansone SA, Schober D, Smith B, Stevens R, Stoeckert C, Taylor C, White J, Wood A. The FuGo working group development of FuGo: an ontology for functional genomics investigations. OMICS J Integrat Biol. 2006;10(2):199–204.CrossRefGoogle Scholar
  17. 17.
    Whetzel PL, Parkinson H, Causton HC, Fan L, Fostel J, Fragoso G, Game L, Heiskanen M, Morrison N, Rocca-Serra P, Sansone SA, Taylor C, White J, Stoeckert CJ. The mged ontology: a resource for semantics-based description of microarray experiments. Bioinformatics. 2006;22(7):866–73.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK
  2. 2.Newcastle UniversityNewcastle-Upon-TyneUK

Section editors and affiliations

  • Louiqa Raschid
    • 1
  1. 1.Robert H. Smith School of BusinessUniversity of MarylandCollege ParkUSA