Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Temporal Coalescing

  • Michael H. BöhlenEmail author
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_388


Temporal coalescing is a unary operator applicable to temporal databases that is similar to duplicate elimination in conventional databases. Temporal coalescing merges value-equivalent tuples, i.e., tuples with overlapping or adjacent timestamps and matching explicit attribute values. Tuples in a temporal relation that agree on the explicit attribute values and that have adjacent or overlapping timestamps are candidates for temporal coalescing. The result of operators may change if a relation is coalesced before applying the operator. For instance, an operator that counts the number of tuples in a relation or an operator that selects all tuples with a timestamp spanning at least 3 months are sensitive to temporal coalescing.

Historical Background

Early temporal relational models implicitly assumed that the relations were coalesced. Ben Zvi’s Time Relational Model [13, Chap. 8], Clifford and Croker’s Historical Relational Data Model (HRDM) [13, Chap. 1], Navathe’s Temporal...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Allen JF. Maintaining knowledge about temporal intervals. Commun ACM. 1983;16(11):832–43.zbMATHCrossRefGoogle Scholar
  2. 2.
    Böhlen MH, Snodgrass RT, Soo MD. Coalescing in temporal databases. In: Proceedings of the 22th International Conference on Very Large Data Bases; 1996. p. 180–91.Google Scholar
  3. 3.
    Böhlen MH, Jensen CS, Snodgrass RT. Temporal statement modifiers. ACM Trans Database Syst. 2000;25(4):48.zbMATHCrossRefGoogle Scholar
  4. 4.
    Celko J. SQL for smarties: advanced SQL programming. San Francisco: Morgan Kaufmann; 1995.zbMATHGoogle Scholar
  5. 5.
    Leung C, Muntz R. Query processing for temporal databases. In: Proceedings of the 6th International Conference on Data Engineering; 1990. p. 200–8.Google Scholar
  6. 6.
    Leung TYC, Pirahesh H. Querying historical data in IBM DB2 C/S DBMS using recursive SQL. In: Clifford J, Tuzhilin A, editors. Recent advances in temporal databases. Berlin: Springer; 1995.Google Scholar
  7. 7.
    Lorentzos N, Johnson R. Extending relational algebra to manipulate temporal data. Inf Syst. 1988;15(3):289.zbMATHCrossRefGoogle Scholar
  8. 8.
    Lorentzos NA, Mitsopoulos YG. Sql extension for interval data. IEEE Trans Knowl Data Eng. 1997;9(3):480–99.zbMATHCrossRefGoogle Scholar
  9. 9.
    Sadeghi R, Samson WB, Deen SM. HQL – a historical query language. Technical report, Dundee College of Technology, Dundee, September 1987.Google Scholar
  10. 10.
    Snodgrass RT. The temporal query language TQuel. ACM Trans Database Syst. 1987;12(2):247–98.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Snodgrass RT, editor. The TSQL2 temporal query language. Boston: Kluwer; 1995.zbMATHGoogle Scholar
  12. 12.
    Snodgrass RT. Developing time-oriented database applications in SQL. San Mateo: Morgan Kaufmann; 2000.Google Scholar
  13. 13.
    Tansel A, Clifford J, Gadia S, Jajodia S, Segev A, Snodgrass RT. 1Temporal databases: theory, design, and implementation. Redwood City: Benjamin/Cummings; 1993.Google Scholar
  14. 14.
    Zhou X, Wang F, Zaniolo C. Efficient temporal coalescing query support in relational database systems. In: Proceedings of the 17th International Conference Database and Expert System Applications; 2006. p. 676–86.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Free University of Bozen-BolzanoBozen-BolzanoItaly
  2. 2.University of ZurichZürichSwitzerland

Section editors and affiliations

  • Richard T. Snodgrass
    • 1
  • Christian S. Jensen
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.Aalborg UniversityAalborg ØstDenmark