Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Spatiotemporal Selectivity Estimation

  • George Kollios
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_363

Synonyms

Selectivity for predictive spatio-temporal queries

Definition

In spatio-temporal databases, the locations of moving objects are usually modeled as linear functions of time. Thus, the location of an object at time t is represented as \( o(t)={o}_s+{o}_vt \)
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Pagel B-U, Six H-W, Toben H, Widmayer P. Towards an analysis of range query performance in spatial data structures. In: Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 1993. p. 214–21.Google Scholar
  2. 2.
    Theodoridis Y, Sellis T. A model for the prediction of R-tree performance. In: Proceedings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 1996. p. 161–71.Google Scholar
  3. 3.
    Acharya S, Poosala V, Ramaswamy S. Selectivity estimation in spatial databases. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1999. p. 13–4.Google Scholar
  4. 4.
    Das A, Gehrke J, Riedewald M. Approximation techniques for spatial data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2004. p. 695–706.Google Scholar
  5. 5.
    Alon N, Gibbons PB, Matias Y, Szegedy M. Tracking join and self-join sizes in limited storage. In: Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 1999. p. 10–20.Google Scholar
  6. 6.
    Hadjieleftheriou M, Kollios G, Tsotras VJ. Performance evaluation of spatio-temporal selectivity estimation techniques. In: Proceedings of the 15th International Conference on Scientific and Statistical Database Management; 2003. p. 202–11.Google Scholar
  7. 7.
    Frahling G, Indyk P, Sohler C. Sampling in dynamic data streams and applications. In: Proceedings of the Symposium on Computational Geometry; 2005. p. 142–9.Google Scholar
  8. 8.
    Tao Y, Lian X, Papadias D, Hadjieleftheriou M. Random sampling for continuous streams with arbitrary updates. IEEE Trans Knowl Data Eng. 2007;19(1):96–110.CrossRefGoogle Scholar
  9. 9.
    Tao Y, Papadias D, Zhai J, Li Q. Venn sampling: a novel prediction technique for moving objects. In: Proceedings of the 21st International Conference on Data Engineering; 2005. p. 680–91.Google Scholar
  10. 10.
    Choi Y-J, Chung C-W. Selectivity estimation for spatio-temporal queries to moving objects. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 2002. p. 440–51.Google Scholar
  11. 11.
    Tao Y, Sun J, Papadias D. Analysis of predictive spatio-temporal queries. ACM Trans Database Syst. 2003;28(4):295–336.CrossRefGoogle Scholar
  12. 12.
    Sun J, Tao Y, Papadias D, Kollios G. Spatio-temporal join selectivity. Inf Syst. 2006;31(8):793–813.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Boston UniversityBostonUSA

Section editors and affiliations

  • Dimitris Papadias
    • 1
  1. 1.Dept. of Computer Science and Eng.Hong Kong Univ. of Science and TechnologyKowloonHong Kong SAR