Skip to main content

Multiple Representation Modeling

  • Reference work entry
  • First Online:

Synonyms

Multi-granularity modeling; Multi-resolution; Multi-scale

Definition

Geodata management systems (i.e., GIS and DBMS) are said to support multiple representationsif they have the capability to record and manage multiple representations of the same real-world phenomena. For example, the same building may have two representations, one with administrative data (e.g., owner and address) and a geometry of type point, and the other one with technical information (e.g., material and height) and a geometry of type surface. Multirepresentation is essential to make a data repository suitable for use by various applications that focus on the same real world of interest, while each application has a specific perception matching its goals. Different perceptions translate into different requirements determining what information is kept and how it is structured, characterized, and valued. A typically used case is map agencies that edit a series of national maps at various scales and on...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   4,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   6,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Recommended Reading

  1. Badard T, Lemarié C. Propagating updates between geographic databases with different scales. chapter 10. In: Atkinson P, Martin D, editors. Innovations in GIS 7: GIS and geo computation. London: Taylor and Francis; 2000. p. 135–46.

    Google Scholar 

  2. Bédard Y, Bernier E. Supporting multiple representations with spatial view management and the concept of VUEL. In: Proceedings of the Joint Workshop on Multiscale Representations of Spatial Data; 2002.

    Google Scholar 

  3. Borges K, Davis CA, Laender A. OMT-G: an object-oriented data model for geographic applications. Geo Informatica. 2001;5(3):221–60.

    MATH  Google Scholar 

  4. Devogele T, Parent C, Spaccapietra S. On spatial database integration. Int J Geogr Inf Syst. 1998;12(4):335–52.

    Article  Google Scholar 

  5. Friis-Christensen A, Jensen CS, Nytun JP, Skogan D. A conceptual schema language for the management of multiple representations of geographic entities. Trans GIS. 2005;9(3):345–80.

    Article  Google Scholar 

  6. Kilpelaïnen T. Maintenance of topographic data by multiple representations. In: Proceedings of the Annual Conference and Exposition of GIS/LIS; 1998. p. 342–51.

    Google Scholar 

  7. Mustière S, Van Smaalen J. Database requirements for generalisation and multiple representations. In: Mackaness WA, Ruas A, Sarjakoski T, editors. Generalisation of geographical information: cartographic modelling and applications. Amsterdam: Elsevier; 2007.

    Google Scholar 

  8. Parent C, Spaccapietra S, Zimányi E. Conceptual modeling for traditional and spatio-temporal applications:the MADS approach. Berlin: Springer; 2006.

    MATH  Google Scholar 

  9. Sarjakoski LT. Conceptual models of generalisation and multiple representation. In: Mackaness WA, Ruas A, Sarjakoski T, editors. Generalisation of geographical information: cartographic modelling and applications. Elsevier: Amsterdam; 2007. p. 11–36.

    Chapter  Google Scholar 

  10. Sheeren D, Mustière S, Zucker JD. How to integrate heterogeneous spatial databases in a consistent way? In: Proceedings of the 8th East European Conference on Advances in Databases and Information Systems; 2004. p. 364–78.

    Chapter  Google Scholar 

  11. Sotnykova A, Vangenot C, Cullot N, Bennacer N, Aufaure M-A. Semantic mappings in description logics for spatio-temporal database schema integration. In: Spaccapietra S, Zimanyi E, editors. Journal on Data Semantics III. Lecture notes in computer science, vol. 3534. Heidelberg: Springer. p. 143–67.

    Chapter  Google Scholar 

  12. Stell JG, Worboys MF Stratified map spaces: a formal basis for multi-resolution spatial databases. In: Proceedings of the 8th International Symposium on Spatial Data Handling; 1998. p. 180–9.

    Google Scholar 

  13. Stuckenschmidt H, Parent C, Spaccapietra S. Modular ontologies. Berlin/New York: Springer LNCS; 2009.

    Book  MATH  Google Scholar 

  14. Timpf S. Map cube model: a model for multi-scale data. In: Proceedings of the 8th International Symposium on Spatial Data Handling; 1998. p. 190–201.

    Google Scholar 

  15. Weibel R, Dutton G. Generalizing spatial data and dealing with multiple representations. In: Geographical information systems: principles, techniques, management and applications, 1, 2nd, P Longley, MF Goodchild, DJ Maguire, DW Rhind. New York/Chichester: Wiley; 1999. p. 125–155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esteban Zimányi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Zimányi, E., Parent, C., Spaccapietra, S., Vangenot, C. (2018). Multiple Representation Modeling. In: Liu, L., Özsu, M.T. (eds) Encyclopedia of Database Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8265-9_237

Download citation

Publish with us

Policies and ethics