Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Moving Objects Databases and Tracking

  • Ralf Hartmut Güting
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_223

Synonyms

Spatio-Temporal Databases; Trajectory Databases

Definition

Moving objects database systems provide concepts in their data model and data structures in the implementation to represent moving objects, i.e., continuously changing geometries. Two important abstractions are moving point, representing an entity for which only the time dependent position is of interest, and moving region, representing an entity for which also the time dependent shape and extent is relevant. Examples of moving points are cars, trucks, air planes, ships, mobile phone users, RFID equipped goods, or polar bears; examples of moving regions are forest fires, deforestation of the Amazon rain forest, oil spills in the sea, armies, epidemic diseases, hurricanes, and so forth.

There are two flavors of such databases. The first represents information about a set of currently moving objects. Basically, one is interested in efficiently maintaining their location information and asking queries about the current...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Almeida VT, Güting RH, Behr T. Querying moving objects in SECONDO. In: Proceedings of the International Conference Mobile Data Management; 2006. p. 47–51.Google Scholar
  2. 2.
    Düntgen C, Behr T, Güting RH. BerlinMOD: a benchmark for moving object databases. VLDB J. 2009;18(6):1335–68.CrossRefGoogle Scholar
  3. 3.
    Erwig M, Güting RH, Schneider M, Vazirgiannis M. Spatio-temporal data types: an approach to modeling and querying moving objects in databases. GeoInformatica. 1999;3(3):265–91.CrossRefGoogle Scholar
  4. 4.
    Giannotti F, Pedreschi D, editors. Mobility, data mining and privacy. Berlin: Springer; 2008.Google Scholar
  5. 5.
    Güting RH, de Almeida VT, Ding Z. Modeling and querying moving objects in networks. VLDB J. 2006;15(2):165–90.CrossRefGoogle Scholar
  6. 6.
    Güting RH, Böhlen MH, Erwig M, Jensen CS, Lorentzos NA, Schneider M, Vazirgiannis M. A foundation for representing and querying moving objects in databases. ACM Trans Database Syst. 2000;25(1):1–42.CrossRefGoogle Scholar
  7. 7.
    Güting RH, Schneider M. Moving objects databases. Amsterdam: Morgan Kaufmann Publishers; 2005.zbMATHGoogle Scholar
  8. 8.
    Lu J, Güting RH. Parallel SECONDO: a practical system for large-scale processing of moving objects. Proceedings of the 30th International Conference on Data Engineering; 2014. p. 1190–3.Google Scholar
  9. 9.
    Parent C, Spaccapietra S, Renso C, Andrienko GL, Andrienko NV, Bogorny V, Damiani ML, Gkoulalas-Divanis A, de Macêdo JAF, Pelekis N, Theodoridis Y, Yan Z. Semantic trajectories modeling and analysis. ACM Comput Surv. 2013;45(4):42.CrossRefGoogle Scholar
  10. 10.
    Pelekis N, Frentzos E, Giatrakos N, Theodoridis Y. HERMES: a trajectory DB engine for mobility-centric applications. Int J Knowl-Based Organ. 2015;5(2):19–41.CrossRefGoogle Scholar
  11. 11.
    Pelekis N, Theodoridis Y. Mobility data management and exploration. New York: Springer; 2014.CrossRefGoogle Scholar
  12. 12.
    Pfoser D, Jensen CS. Capturing the uncertainty of moving-object representations. In: Proceedings of the 6th International Symposium on Spatial Databases; 1999. p. 111–31.CrossRefGoogle Scholar
  13. 13.
    Renso C, Spaccapietra S, Zimányi E. Mobility data: modeling, management, and understanding. Cambridge, UK: Cambridge University Press; 2013.CrossRefGoogle Scholar
  14. 14.
    Rigaux P, Scholl M, Segoufin L, Grumbach S. Building a constraint-based spatial database system: model, languages, and implementation. Inf Syst. 2003;28(6):563–95.zbMATHCrossRefGoogle Scholar
  15. 15.
    Sistla AP, Wolfson O, Chamberlain S, Dao S. Modeling and querying moving objects. In: Proceedings of the 13th International Conference on Data Engineering; 1997. p. 422–32.Google Scholar
  16. 16.
    Speicys L, Jensen CS, Kligys A. Computational data modeling for network-constrained moving objects. In: Proceedings of the 11th ACM Symposium on Advances in Geographic Information Systems; 2003. p. 118–25.Google Scholar
  17. 17.
    Trajcevski G, Wolfson O, Hinrichs K, Chamberlain S. Managing uncertainty in moving objects databases. ACM Trans Database Syst. 2004;29(3):463–507.CrossRefGoogle Scholar
  18. 18.
    Wolfson O, Chamberlain S, Dao S, Jiang L, Mendez G. Cost and imprecision in modeling the position of moving objects. In: Proceedings of the 14th International Conference on Data Engineering; 1998. p. 588–96.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fakultät für Mathematik und InformatikFernuniversität HagenHagenGermany
  2. 2.Computer ScienceUniversity of HagenHagenGermany

Section editors and affiliations

  • Ouri Wolfson
    • 1
  1. 1.Mobile Information Systems Center (MOBIS)The University of Illinois at ChicagoChicagoUSA