Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Interoperability in Data Warehouses

  • Riccardo Torlone
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_207

Synonyms

Data warehouse integration

Definition

The term refers to the ability of combining the content of two or more heterogeneous data warehouses, for the purpose of cross-analysis. This need emerges in a variety of practical situations. For instance, when different designers of a large company develop their data marts independently, or when different organizations involved in the same project need to integrate their data warehouses.

Data Warehouse interoperability is a special case of the general problem of database integration, but it can be tackled in a more systematic way because data warehouses are structured in a rather uniform way, along the widely accepted concepts of dimension and fact. As it happens in the general case, different degrees of interoperability can be pursued by adopting standards and/or by applying reconciliation techniques, likely specific for this context.

The problem is becoming increasingly relevant with the spreading of federated architectures....

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Abelló A, Darmont J, Etcheverry L, Golfarelli M, Mazón J-N, Naumann F, Pedersen TB, Rizzi S, Trujillo J, Vassiliadis P, Vossen G. Fusion cubes: towards self-service business intelligence. J Data Warehous Min. 2013;9(2):66–88.CrossRefGoogle Scholar
  2. 2.
    Abelló A, Romero O, Pedersen TB, Llavori RB, Nebot V, Aramburu Cabo MJ, Simitsis A. Using semantic web technologies for exploratory OLAP: a survey. IEEE Trans Knowl Data Eng. 2015;27(2):571–88.CrossRefGoogle Scholar
  3. 3.
    Banek M, Vrdoljak B, Min Tjoa A, Skocir Z. Automating the schema matching process for heterogeneous data warehouses. In: Proceedings of the 9th International Conference on Data Warehousing and Knowledge Discovery; 2007. p. 45–54.Google Scholar
  4. 4.
    Bergamaschi S, Olaru M. O., Sorrentino S, Vincini M. Dimension matching in Peer-to-Peer Data Warehousing. In: Proceedings of the 8th International Conference on Decision Support Systems; 2012. p. 149–60.Google Scholar
  5. 5.
    Berger S, Schrefl M. Analysing multi-dimensional data across autonomous data warehouses. In: Proceedings of the 8th International Conference on Data Warehousing and Knowledge Discovery; 2006. p. 120–33.CrossRefGoogle Scholar
  6. 6.
    Berger S, Schrefl M. FedDW global schema architect: UML-based design tool for the integration of data mart schemas. In: Proceedings of the 15th International Workshop on Data warehousing and OLAP; 2012. p. 33–40.Google Scholar
  7. 7.
    Cabibbo L, Torlone R. On the integration of autonomous data marts. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management; 2004. p. 223–34.Google Scholar
  8. 8.
    Cabibbo L, Torlone R. Integrating heterogeneous multidimensional databases. In: Proceedings of the 17th International Conference on Scientific and Statistical Database Management; 2005. p. 205–14.Google Scholar
  9. 9.
    Cabibbo L, Panella I. Torlone R. DaWaII: a tool for the integration of autonomous data marts. In: Proceedings of the 22nd International Conference on Data Engineering, Demo session; 2006.Google Scholar
  10. 10.
    Etcheverry L, Vaisman A, Zimányi E. Modeling and querying data warehouses on the semantic web using QB4OLAP. In: Proceedings of the 16th International Conference on Data Warehousing and Knowledge Discovery; 2014. p. 45–56.Google Scholar
  11. 11.
    Jensen MR, Møller TM, Pedersen TB. Specifying OLAP cubes on XML data. J Intell Inf Syst. 2001;17(2–3):255–80.zbMATHCrossRefGoogle Scholar
  12. 12.
    Kämpgen B, Stadtmüller S, Harth A. Querying the global cube: integration of multidimensional datasets from the web. In: Proceedings of the 19th International Conference on Knowledge Engineering and Knowledge Management; 2014. p. 250–65.Google Scholar
  13. 13.
    Kimball R, Ross M. The data warehouse toolkit: the complete guide to dimensional modeling. 2nd ed. Wiley; 2002.Google Scholar
  14. 14.
    Golfarelli M, Mandreoli F, Penzo W, Rizzi S, Turricchia E. OLAP query reformulation in peer-to-peer data warehousing. Inf Syst. 2012;37(5):393–411.CrossRefGoogle Scholar
  15. 15.
    Lenzerini M. Data integration: a theoretical perspective. In: Proceedings of the 21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2002. p. 233–46.Google Scholar
  16. 16.
    Malvestuto FM. The classification problem with semantically heterogeneous data. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1988. p. 157–76.Google Scholar
  17. 17.
    Mangisengi O, Huber J, Hawel C, Eßmayr W. A framework for supporting interoperability of data warehouse islands using XML. In: Proceedings of the 3rd International Conference on Data Warehousing and Knowledge Discovery; 2001. p. 328–38.zbMATHCrossRefGoogle Scholar
  18. 18.
    Nebot V, Berlanga Llavori RB, Pérez-Martínez JM, Aramburu MJ, Pedersen TB. Multidimensional integrated ontologies: a framework for designing semantic data warehouses. J Data Semant. 2009;13:1–36.Google Scholar
  19. 19.
    Olaru MO. Partial multi-dimensional schema merging in heterogeneous data warehouses. In: Proceedings of the 31st International Conference on Conceptual Modeling; 2012. p. 563–71.CrossRefGoogle Scholar
  20. 20.
    Pedersen TB, Shoshani A, Gu J, Jensen C8.S. Extending OLAP querying to external object databases. In: Proceedings of the 9th International Conference on Information and Knowledge Management; 2000. p. 405–13.Google Scholar
  21. 21.
    Rahm E, Bernstein PA. A survey of approaches to automatic schema matching. VLDB J. 2001;10(4):334–50.zbMATHCrossRefGoogle Scholar
  22. 22.
    Rizzi S, Abelló A, Lechtenbörger J, Trujillo J. Research in data warehouse modeling and design: dead or alive? In: Proceedings of the ACM the 9th International Workshop on Data Warehousing and OLAP; 2006. p. 3–10.Google Scholar
  23. 23.
    Sato H. Handling summary information in a database: derivability. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1981. p. 98–107.Google Scholar
  24. 24.
    Torlone R. Two approaches to the integration of heterogeneous data warehouses. Distrib Parallel Databases. 2008;23(1):69–97.CrossRefGoogle Scholar
  25. 25.
    Tseng FSC, Chen CW. Integrating heterogeneous data warehouses using XML technologies. J Inf Sci. 2005;31(3):209–29.CrossRefGoogle Scholar
  26. 26.
    Vetterli T, Vaduva A, Staudt M. Metadata standards for data warehousing: open information model vs. common warehouse metamodel. ACM SIGMOD Rec. 2000;29(3):68–75.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of RomeRomeItaly

Section editors and affiliations

  • Torben Bach Pedersen
    • 1
  • Stefano Rizzi
    • 2
  1. 1.Department of Computer ScienceAalborg UniversityAalborgDenmark
  2. 2.DISIUniv. of BolognaBolognaItaly