Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Graph Mining on Streams

  • Andrew McGregor
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_184

Synonyms

Graph streams; Semi-streaming model

Definition

Consider a data stream A = 〈 a 1, a 2, … , a m〉 where each data item a k ∈ [ n] × [ n]. Such a stream naturally defines an undirected, unweighted graph G = ( V, E) where
$$ \begin{array}{l}\operatorname{}\operatorname{} V=\left\{{v}_1,\dots, {v}_n\right\}\; and\\ {}E=\left\{\left({v}_i,{v}_j\right):{a}_k=\left(i{,}j\right)\, \mathrm{for}\;\mathrm{some}\;k\in \left[m\right]\right\}.\end{array} $$
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Aggarwal G, Datar M, Rajagopalan S, Ruhl M. On the streaming model augmented with a sorting primitive. In: Proceedings of the IEEE Symposium on Foundations of Computer Science; 2004. p. 540–9.Google Scholar
  2. 2.
    Bar-Yossef Z, Kumar R, Sivakumar D. Reductions in streaming algorithms, with an application to counting triangles in graphs. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms; 2002. p. 623–32.Google Scholar
  3. 3.
    Buchsbaum AL, Giancarlo R, Westbrook J. On finding common neighborhoods in massive graphs. Theor Comput Sci. 2003;1–3(299):707–18.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Buriol LS, Frahling G, Leonardi S, Marchetti-Spaccamela A, Sohler C. Counting triangles in data streams. In: Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2006. p. 253–62.Google Scholar
  5. 5.
    Chakrabarti A, Cormode G, McGregor A. A near-optimal algorithm for computing the entropy of a stream. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms; 2007. p. 328–35.Google Scholar
  6. 6.
    Cormode G, Muthukrishnan S. Space efficient mining of multigraph streams. In: Proceedings of the 24th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2005. p. 271–82.Google Scholar
  7. 7.
    Das Sarma A, Gollapudi S, Panigrahy R. Estimating PageRank on graph streams. In: Proceedings of the 27th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems; 2008. p. 69–78.Google Scholar
  8. 8.
    Demetrescu C, Escoffier B, Moruz G, Ribichini A. Adapting parallel algorithms to the w-stream model, with applications to graph problems. In: Proceedings of the International Symposium on Mathematical Foundations of Computer Science; 2007.p. 194–205.Google Scholar
  9. 9.
    Demetrescu C, Finocchi I, Ribichini A. Trading off space for passes in graph streaming problems. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms; 2006. p. 714–23.Google Scholar
  10. 10.
    Elkin M. Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. In: Proceedings of the 34th International Colloquium on Automata, Languages, and Programming; 2007. p. 716–27.Google Scholar
  11. 11.
    Elkin M, Zhang J. Efficient algorithms for constructing (1 + ε, β)-spanners in the distributed and streaming models. Distrib Comput. 2006;18(5):375–85.zbMATHCrossRefGoogle Scholar
  12. 12.
    Feigenbaum J, Kannan S, McGregor A, Suri S, Zhang J. Graph distances in the data-stream model. SIAM J Comput. 2008;38(5):1708–27.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Feigenbaum J, Kannan S, McGregor A, Suri S, Zhang J. On graph problems in a semi-streaming model. Theor Comput Sci. 2005;348(2–3):207–16.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ganguly S, Saha B. On estimating path aggregates over streaming graphs. In: Proceedings of the International Symposium on Algorithms and Computation; 2006. p. 163–72.CrossRefGoogle Scholar
  15. 15.
    Henzinger MR, Raghavan P, Rajagopalan S. Computing on data streams. In: External memory algorithms. Boston: American Mathematical Society; 1999. p. 107–18.CrossRefGoogle Scholar
  16. 16.
    McGregor A. Finding graph matchings in data streams. In: APPROX-RANDOM; 2005. p. 170–81.Google Scholar
  17. 17.
    Muthukrishnan S. Data streams: algorithms and applications. Foundations and trends in theoretical computer science, vol. 1-2. Hanover: Now; 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zelke M. k-connectivity in the semi-streaming model. CoRR, cs/0608066. 2006.Google Scholar
  19. 19.
    Zelke M. Weighted matching in the semi-streaming model. In: Proceedings of the Symposium on Theoretical Aspects of Computer Science; 2008.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Microsoft ResearchSilicon ValleyMountain ViewUSA

Section editors and affiliations

  • Divesh Srivastava
    • 1
  1. 1.AT&T Labs - ResearchAT&TBedminsterUSA