Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Emerging Patterns

  • Guozhu Dong
  • Jinyan Li
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_145

Synonyms

Contrast pattern; Group difference

Definition

Roughly speaking, emerging patterns [3] are patterns whose support changes significantly from one dataset to another. The definition below captures significant change in terms of big growth rate.

Formally, let \( {\mathcal{D}}_1 \)
This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Bailey J, Manoukian T, Ramamohanarao K. A fast algorithm for computing hypergraph transversals and its application in mining emerging patterns. In: Proceedings of the 3rd IEEE International Conference on Data Mining; 2003. p. 485–8.Google Scholar
  2. 2.
    Bay SD, Pazzani MJ. Detecting change in categorical data: mining contrast sets. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 1999. p. 302–6.Google Scholar
  3. 3.
    Dong G, Li J. Efficient mining of emerging patterns: discovering trends and differences. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 1999. p. 43–52. Journal version [5].Google Scholar
  4. 4.
    Dong G, Han J, Lam JMW, Pei J, Wang K, Zou W. Mining constrained gradients in large databases. IEEE Trans Knowl Data Eng. 2004;16(8):922–38.CrossRefGoogle Scholar
  5. 5.
    Dong G, Li J. Mining border descriptions of emerging patterns from dataset pairs. Knowl Inf Syst. 2005;8(2):178–202.CrossRefGoogle Scholar
  6. 6.
    Ji X, Bailey J, Dong G. Mining minimal distinguishing subsequence patterns with gap constraints. In: Proceedings of the 5th IEEE Internatioanl Conference on Data Mining; 2005. p. 194–201. Journal version [7].Google Scholar
  7. 7.
    Ji X, Bailey J, Dong G. Mining distinguishing subsequences patterns with gap constraints. Knowl Inf Syst. 2007;11(3):259–89.CrossRefGoogle Scholar
  8. 8.
    Li J, Liu G, Wong L. Mining statistically important equivalence classes and δ-discriminative emerging patterns. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2007. p. 430–9.Google Scholar
  9. 9.
    Li J, Manoukian T, Dong G, Ramamohanarao K. Incremental maintenance on the border of the space of emerging patterns. Data Min Knowl Discov. 2004;9(1):89–116.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Li J, Ramamohanarao K, Dong G. The space of jumping emerging patterns and its incremental maintenance algorithms. In: Proceedings of the 17th International Conference on Machine Learning; 2000. p. 551–8.Google Scholar
  11. 11.
    Liu B, Hsu W, Ma Y. Discovering the set of fundamental rule changes. In: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2001. p. 335–40.Google Scholar
  12. 12.
    Loekito E, Bailey J. Fast mining of high dimensional expressive contrast patterns using zero-suppressed binary decision diagrams. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2006. p. 307–16.Google Scholar
  13. 13.
    Ting MHT, Bailey J. Mining minimal contrast subgraph patterns. In: Proceedings of the 2006 SIAM International Conference on Data Mining; 2006. p. 638–42.Google Scholar
  14. 14.
    Terlecki P, Walczak K. On the relation between rough set reducts and jumping emerging patterns. Inf Sci. 2007;177(1):74–83.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Vreeken J, van Leeuwen M, Siebes A. Characterising the difference. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2007. p. 765–74.Google Scholar
  16. 16.
    Wang L, Zhao H, Dong G, Li J. On the complexity of finding emerging patterns. Theor Comput Sci. 2005;335(1):15–27.MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Webb GI, Butler SM, Newlands DA. On detecting differences between groups. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2003. p. 256–65.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wright State UniversityDaytonUSA
  2. 2.Nanyang Technological UniversitySingaporeSingapore

Section editors and affiliations

  • Jian Pei
    • 1
  1. 1.School of Computing ScienceSimon Fraser Univ.BurnabyCanada