Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Constraint Query Languages

  • Floris Geerts
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1240

Definition

A constraint query language is a query language for constraint databases.

Historical Background

The field of constraint databases was initiated in 1990 in a paper by Kanellakis, Kuper, and Revesz [1]. The goal was to obtain a database-style, optimizable version of constraint logic programming. It grew out of the research on datalog and constraint logic programming. The key idea was that the notion of tuple in a relational database could be replaced by a conjunction of constraints from an appropriate language and that many of the features of the relational model could then be extended in an appropriate way. In particular, standard query languages such as those based on first-order logic and datalog could be extended to such a model.

It soon became clear, however, that recursive constraint query languages led to noneffective languages. The focus therefore shifted to non-recursive constraint query languages. The standard query language is the constraint relational calculus (or...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Kanellakis PC, Kuper GM, Revesz PZ. Constraint query languages. J Comput Syst Sci. 1995;51(1):26–52.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Kuper GM, Libkin L, Paredaens J. Constraint databases. Berlin: Springer; 2000.zbMATHCrossRefGoogle Scholar
  3. 3.
    Revesz PZ. Introduction to constraint databases. New York: Springer; 2002.zbMATHGoogle Scholar
  4. 4.
    Benedikt M, Libkin L. Relational queries over interpreted structures. J ACM. 2000;47(4):644–80.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Grumbach S, Su J. Queries with arithmetical constraints. Theor Comput Sci. 1997;173(1):151–81.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Gyssens M, Van den Bussche J, Van Gucht D. Complete geometric query languages. J Comput Syst Sci. 1999;58(3):483–511.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kuijpers B, Paredaens J, Van den Bussche J. Topological elementary equivalence of closed semi-algebraic sets in the real plane. J Symb Log. 2000;65(4):1530–55.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Benedikt M, Kuijpers B, Löding C, Van den Bussche J, Wilke T. A characterization of first-order topological properties of planar spatial data. J. ACM. 2006;53(2):273–305.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Geerts F, Kuijpers B, Van den Bussche J. Linearization and completeness results for terminating transitive closure queries on spatial databases. SIAM J Comput. 2006;35(6):1386–439.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Benedikt M, Libkin L. Aggregate operators in constraint query languages. J Comput Syst Sci. 2002;64(3):628–54.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Benedikt M, Grohe M, Libkin L, Segoufin L. Reachability and connectivity queries in constraint databases. J Comput Syst Sci. 2003;66(1):169–206.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Van den Bussche J. Constraint databases. A tutorial introduction ACM SIGMOD Record. 2000;29(3):44–51.zbMATHCrossRefGoogle Scholar
  13. 13.
    Libkin L. Embedded finite models and constraint databases. In: Grädel E, Kolaitis PG, Libkin L, Marx M, Spencer J, Vardi MY, Venema Y, Weinstein S, editors. Finite Model Theory and Its Applications. Berlin/Heidelberg: Springer; 2007.Google Scholar
  14. 14.
    Geerts F, Kuijpers B. Real algebraic geometry and constraint databases. In: Aiello M, Pratt-Hartmann I, Van Benthem J, editors. Handbook of Spatial Logics. Dordrecht: Springer; 2007.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AntwerpAntwerpBelgium

Section editors and affiliations

  • Leonid Libkin
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK