Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Data Warehouse Maintenance, Evolution, and Versioning

  • Johann Eder
  • Christian Koncilia
  • Karl Wiggisser
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_118

Synonyms

Temporal data warehousing

Definition

A multi-dimensional Data Warehouse consists of three different levels: The schema level (dimensions, categories), the instance level (dimension members, master data) and the data level (data cells, transaction data). The process and methodology of performing changes on the schema and instance level to represent changes in the data warehouse’s application domain or requirements is called Data Warehouse Maintenance. Data Warehouse Evolution is a form of data warehouse maintenance where only the newest data warehouse state is available. Data Warehouse Versioning is a form of data warehouse maintenance where all past versions of the data warehouse are kept available. Dealing with changes on the data level, mostly insertion of new data, is not part of data warehouse maintenance, but part of a data warehouse’s normal operation.

Historical Background

Data warehouses are supposed to provide functionality for storing and analyzing data over a long...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Multi-dimensional modeling with BW: ASAP for BW accelerator. Technical report, SAP Inc. 2000.Google Scholar
  2. 2.
    KALIDO dynamic information warehouse: a technical overview. Technical report, Kalido, 2004.Google Scholar
  3. 3.
    Bȩbel B, Eder J, Koncilia C, Morzy T, Wrembel R. Creation and management of versions in multiversion data warehouse. In: Proceedings of the 2004 ACM Symposium on Applied Computing; 2004. p. 717–23.Google Scholar
  4. 4.
    Blaschka M, Sapia C, Höfling G. On schema evolution in multidimensional databases. In: Proceedings of the 1st International Conference on Data Warehousing and Knowledge Discovery; 1999. p. 153–64.CrossRefGoogle Scholar
  5. 5.
    Chamoni P, Stock S. Temporal structures in data warehousing. In: Proceedings of the 1st International Conference on Data Warehousing and Knowledge Discovery; 1999. p. 353–8.CrossRefGoogle Scholar
  6. 6.
    Eder J, Koncilia C, Morzy T. The COMET metamodel for temporal data warehouses. In: Proceedings of the 14th International Conference on Advanced Information Systems Engineering; 2002. p. 83–99.Google Scholar
  7. 7.
    Eder J, Koncilia C, Wiggisser K. Maintaining temporal warehouse models. In: Proceedings of the International Conference on Research and Practical Issues of Enterprise Information Systems; 2006. p. 21–30.Google Scholar
  8. 8.
    Golfarelli M, Lechtenbörger J, Rizzi S, Vossen G. Schema versioning in data warehouses: enabling cross-version querying via schema augmentation. Data Knowl Eng. 2006;59(2):435–59.CrossRefGoogle Scholar
  9. 9.
    Goller M, Berger S. Slowly changing measures. In: Proceedings of the ACM 16th International Workshop on Data Warehousing and OLAP; 2013. p. 47–54.Google Scholar
  10. 10.
    Jovanovic P, Romero O, Simitsis A, Abell A, Mayorova v. A requirement-driven approach to the design and evolution of data warehouses. Inf Syst. 2014;44(0):94–119.CrossRefGoogle Scholar
  11. 11.
    Kimball R. Slowly changing dimensions. DBMS Mag. 1996;9(4):14.Google Scholar
  12. 12.
    Quix C. Repository support for data warehouse evolution. In: Proceedings of the 1st International Workshop on Design and Management of Data Warehouses; 1999.Google Scholar
  13. 13.
    Ravat F, Teste O. A temporal object-oriented data warehouse model. In: Proceedings of the 11th International Conference on Database and Expert Systems Applications; 2000. p. 583–92.Google Scholar
  14. 14.
    Rundensteiner EA, Koeller A, Zhang X. Maintaining data warehouses over changing information sources. Commun ACM. 2000;43(6):57–62.CrossRefGoogle Scholar
  15. 15.
    Sarda NL. Temporal issues in data warehouse systems. In: Proceedings of the International Symposium on Database Applications in Non-Traditional Environments; 1999.Google Scholar
  16. 16.
    Vaisman A, Mendelzon A. A temporal query language for OLAP: implementation and a case study. In: Proceedings of the 8th International Workshop on Database Programming Languages; 2001. p. 78–96.CrossRefGoogle Scholar
  17. 17.
    Yang J, Widom J. Maintaining temporal views over non-temporal information sources for data warehousing. In: Advances in Database Technology, Proceedings of the 6th International Conference on Extending Database Technology; 1998. p. 389–403.Google Scholar
  18. 18.
    Zhuge Y, Garcia-Molina H, Hammer J, Widom J. View maintenance in a warehousing environment. In: Proceedings of the ACM SIGMOD International Conference on Management of Data; 1995. p. 316–27.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Johann Eder
    • 1
  • Christian Koncilia
    • 2
  • Karl Wiggisser
    • 2
  1. 1.Department of Informatics-SystemsAlpen-Adria-Universität KlagenfurtKlagenfurtAustria
  2. 2.Institute of Informatics-SystemsUniversity of KlagenfurtKlagenfurtAustria