Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Dense Pixel Displays

  • Daniel A. Keim
  • Peter Bak
  • Matthias Schäfer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1131

Synonyms

Data visualization; Information displays; Information visualization; Pixel-oriented visualization techniques; Visual data exploration; Visual data mining; Visualizing large data sets; Visualizing multidimensional and multivariate data

Definition

Dense pixel displays are a visual data exploration technique. Data exploration aims at analyzing large amounts of multidimensional data for detecting patterns and extracting hidden information. Human involvement is indispensable to carry out such a task, since human’s powerful perceptual abilities and domain knowledge are essential for defining interesting patterns and interpreting findings. Dense pixel displays support this task by an adequate visual representation of as much information as possible while avoiding aggregation of data values. Data is shown using every pixel of the display for representing one data point. Attributes of the data are mapped in separate sub-windows of the display, leaving one attribute for one sub-window....

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Anderson E. A semigraphical method for the analysis of complex problems. Proc Nat Acad Sci USA. 1957;43(10):923–7.CrossRefzbMATHGoogle Scholar
  2. 2.
    Ankerst M, Keim DA, Kriegel HP. Circle segments: a technique for visually exploring large multidimensional data sets. In: Proceedings of the IEEE Symposium on Visualization; 1996.Google Scholar
  3. 3.
    Brissom D. Hypergraphics: Visualizing complex relationships in art, science and technology (AAAS Selected Symposium; 24). Westview Press; 1979.Google Scholar
  4. 4.
    Chernoff H. The use of faces to represent points in k-dimensional space graphically. J Am Stat Assoc. 1973;68(342):361–8.CrossRefGoogle Scholar
  5. 5.
    Cleveland WS. Visualizing data. Summit: Hobart Press; 1993.Google Scholar
  6. 6.
    Inselberg A. N-Dimensional Graphics Part I: Lines and Hyperplanes, IBM LA Science Center Report, # G320-2711; 1981.Google Scholar
  7. 7.
    Keim DA, Hao MC, Dayal U, Hsu M. Pixel bar charts: a visualization technique for very large multi-attribute data sets. Inf Visualization. 2001;1(1):20–34.CrossRefGoogle Scholar
  8. 8.
    Keim DA, Kriegel HP, Ankerst M. Recursive pattern: a technique for visualizing very large amounts of data. In: Proceedings of the IEEE Symposium on Visualization; 1995. p. 279–86.CrossRefGoogle Scholar
  9. 9.
    Keim DA, Nietzschmann T, Schelwies N, Schneidewind J, Schreck T, Zeigler H. A spectral visualization system for analyzing financial time series data. In: Proceedings of the Eighth Joint Eurographics/IEEE VGTC conference on Visualization; 2006. p. 195–202.Google Scholar
  10. 10.
    Keim DA, North SC, Panse C, Sips M. PixelMaps: a new visual data mining approach for analyzing large spatial data sets. In: Proceedings of the 2003 IEEE International Conference on Data Mining; 2003. p. 565–8.Google Scholar
  11. 11.
    Keim DA, Oelke D. Literature fingerprinting: a new method for visual literary analysis. In: Proceedings of the IEEE Symposium on Visual Analytics and Technology; 2007.Google Scholar
  12. 12.
    Langton JT, Prinz AA, Wittenberg DK, Hickey TJ. Leveraging layout with dimensional stacking and pixelization to facilitate feature discovery and directed queries. In: Proceedings of the Visual Information Expert Workshop; 2006.Google Scholar
  13. 13.
    Tufte ER. The visual display of quantitative information. Cheshire: Graphics Press; 1983.Google Scholar
  14. 14.
    Tufte ER. Envisioning information. Cheshire: Graphics Press; 1990.Google Scholar
  15. 15.
    Ziegler H, Nietzschmann T, Keim DA. Relevance driven visualization of financial performance measures. In: Proceedings of the Eurographics/IEEE-VGTC Symposium on Visualization; 2007. p. 19–26.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science DepartmentUniversity of Konstanz, Universitätsstraße 10KonstanzGermany
  2. 2.IBM Watson HealthFoundational InnovationHaifaIsrael
  3. 3.University of KonstanzKonstanzGermany

Section editors and affiliations

  • Daniel A. Keim
    • 1
  1. 1.Computer Science DepartmentUniversity of Konstanz, Universitätsstraße 10KonstanzGermany