Encyclopedia of Database Systems

2018 Edition
| Editors: Ling Liu, M. Tamer Özsu

Visual Content Analysis

  • Marcel Worring
  • Cees Snoek
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-8265-9_1019

Synonyms

Image indexing; Video indexing

Definition

Visual content analysis is the process of deriving meaningful descriptors for image and video data. These descriptors are the basis for searching large image and video collections. In practice, before the process starts, one applies image processing techniques which take the visual data, apply an operator, and return other visual data with less noise or specific characteristics of the visual data emphasized. The analysis considered in this contribution starts from here, ultimately aiming at semantic descriptors.

Historical Background

Analyzing the content of visual data using computers has a long history, dating back to the 1960s. Some initial successes prompted researchers in the 1970s to predict that the problem of understanding visual material would soon be solved completely. However, the research in the 80s showed that these predictions were far too optimistic. Even now, understanding visual data is still a major challenge.

In the...

This is a preview of subscription content, log in to check access.

Recommended Reading

  1. 1.
    Chang CC, Lin CJ. LIBSVM: a library for support vector machines. 2001. Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm/.
  2. 2.
    Everingham M, van Gool L, Williams C, Winn J, Zisserman A. The PASCAL visual object classes homepage. Available at: http://www.pascal-network.org/challenges/VOC/.
  3. 3.
    Gemert J, Geusebroek J, Veenman C, Snoek C, Smeulders A. Robust scene categorization by learning image statistics in context. In: Proceedings of the International Workshop on Semantic Learning Applications in Multimedia; 2006.Google Scholar
  4. 4.
    Geusebroek J, Boomgaard R, Smeulders A, Geerts H. Color invariance. IEEE Trans Pattern Anal Mach Intell. 2001;23(12):1338–50.CrossRefGoogle Scholar
  5. 5.
    Jain A, Duin R, Mao J. Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell. 2000;22(1):4–37.CrossRefGoogle Scholar
  6. 6.
    Jiang YG, Ngo CW, Yang J. VIREO-374: LSCOM semantic concept detectors using local keypoint features. Available at: http://www.cs.cityu.edu.hk/~yjiang/vireo374/.
  7. 7.
    Lowe DG. Distinctive image features from scale-invariant keypoints. Int J Comput Vis. 2004;60(2):91–110.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Sikora T. The MPEG-7 visual standard for content description-an overview. IEEE Trans Circ Syst Video Tech. 2001;11(6):696–702.CrossRefGoogle Scholar
  9. 9.
    Smeaton A. Large scale evaluations of multimedia information retrieval: the TRECVid experience. In: Proceedings of the 4th International Conference on Image and Video Retrieval; 2005. p. 19–27.Google Scholar
  10. 10.
    Smeulders A, Worring M, Santini S, Gupta A, Jain R. Content based image retrieval at the end of the early years. IEEE Trans Pattern Anal Mach Intell. 2000;22(12):1349–80.CrossRefGoogle Scholar
  11. 11.
    Snoek C, Worring M. Multimodal video indexing: a review of the state-of-the-art. Multimed Tool Appl. 2005;25(1):5–35.CrossRefGoogle Scholar
  12. 12.
    Snoek C, Worring M, van Gemert JC, Geusebroek JM, Smeulders A. The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of the 14th ACM International Conference on Multimedia; 2006.Google Scholar
  13. 13.
    Snoek C, Worring M, Geusebroek J, Koelma D, Seinstra F, Smeulders A. The semantic pathfinder: using an authoring metaphor for generic multimedia indexing. IEEE Trans Pattern Analy Mechine Intell. 2006;28(10):1678–89.CrossRefGoogle Scholar
  14. 14.
    Vapnik V. The nature of statistical learning theory. New York: Springer; 2000.zbMATHCrossRefGoogle Scholar
  15. 15.
    Yanagawa A, Chang SF, Kennedy L, Hsu W. Columbia university’s baseline detectors for 374 LSCOM semantic visual concepts. Columbia University, 2007. aDVENT technical report 222-2006-8.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of AmsterdamAmsterdamThe Netherlands

Section editors and affiliations

  • Vincent Oria
    • 1
  • Shin'ichi Satoh
    • 2
  1. 1.Dept. of Computer ScienceNew Jersey Inst. of TechnologyNewarkUSA
  2. 2.Digital Content and Media Sciences ReseaMultimedia Information Research DivisionNational Institute of InformaticsTokyoJapan