Advertisement

Melanoma pp 1-15 | Cite as

Introduction to Melanoma Immunology

  • Ryan J. SullivanEmail author
  • F. Stephen Hodi
Living reference work entry

Abstract

Immunotherapy has been a mainstay for decades, however in recent years a number of new approaches to harness the immune system have been developed and revolutionized the treatment of this disease. This chapter serves as an introduction to immunotherapy efforts in melanoma that includes a description of the immune system elements and tumor immune microenvironment and the justification for their targeting, presentation of proof of concept examples of effective immunotherapy, and a discussion of some of the present dilemmas in the field that need to be sorted out over the coming decade.

Keywords

PD-1 inhibitor interleukin 2 CTLA4 immune related adverse events biomarkers 

References

  1. Alva A, Daniels GA, Wong MK, Kaufman HL, Morse MA, McDermott DF et al (2016) Contemporary experience with high-dose interleukin-2 therapy and impact on survival in patients with metastatic melanoma and metastatic renal cell carcinoma. Cancer Immunol Immunother 65(12):1533–1544CrossRefGoogle Scholar
  2. Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J et al (2015) Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33(25):2780–2788CrossRefGoogle Scholar
  3. Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K et al (1999) High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 17(7):2105–2116CrossRefGoogle Scholar
  4. Beck KE, Blansfield JA, Tran KQ, Feldman AL, Hughes MS, Royal RE et al (2006) Enterocolitis in patients with cancer after antibody blockade of cytotoxic T-lymphocyte-associated antigen 4. J Clin Oncol 24(15):2283–2289CrossRefGoogle Scholar
  5. Bernatchez C, Haymaker CL, Hurwitz ME, Kluger HM, Tetzlaff MT, Jackson N et al (eds) Effect of a novel IL-2 cytokine immune agonist (NKTR-214) on proliferating CD8+T cells and PD-1 expression on immune cells in the tumor microenvironment in patients with prior checkpoint therapy. ASCO 2017 annual meeting, 2017, Chicago. J Clin OncolGoogle Scholar
  6. Brahmer JR, Lacchetti C, Schneider BJ, Atkins MB, Brassil KJ, Caterino JM et al (2018) Management of Immune-Related Adverse Events in Patients Treated With Immune Checkpoint Inhibitor Therapy: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 36:1714.  https://doi.org/10.1200/JCO.2017.77.6385CrossRefPubMedGoogle Scholar
  7. Cancer Genome Atlas Network (2015) Genomic classification of cutaneous melanoma. Cell 161(7):1681–1696CrossRefGoogle Scholar
  8. Charych D, Khalili S, Dixit V, Kirk P, Chang T, Langowski J et al (2017) Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS One 12(7):e0179431CrossRefGoogle Scholar
  9. Chen DS, Mellman I (2013) Oncology meets immunology: the cancer-immunity cycle. Immunity 39(1):1–10CrossRefGoogle Scholar
  10. Chen DS, Mellman I (2017) Elements of cancer immunity and the cancer-immune set point. Nature 541(7637):321–330CrossRefGoogle Scholar
  11. Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J et al (2017) Randomized, open-label phase II study evaluating the efficacy and safety of Talimogene Laherparepvec in combination with Ipilimumab versus Ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol.  https://doi.org/10.1200/JCO.2017.73.7379
  12. Coley WB (1910) The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med 3(Surg Sect):1–48PubMedPubMedCentralGoogle Scholar
  13. Coley WB, Hoguet JP (1916) Melanotic cancer: with a report of 91 cases. Ann Surg 64(2):206–241CrossRefGoogle Scholar
  14. Curran MA, Montalvo W, Yagita H, Allison JP (2010) PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 107(9):4275–4280CrossRefGoogle Scholar
  15. Curti B, Daniels GA, McDermott DF, Clark JI, Kaufman HL, Logan TF et al (2017) Improved survival and tumor control with Interleukin-2 is associated with the development of immune-related adverse events: data from the PROCLAIM(SM) registry. J Immunother Cancer 5(1):102CrossRefGoogle Scholar
  16. Daud AI, Wolchok JD, Robert C, Hwu WJ, Weber JS, Ribas A et al (2016) Programmed death-ligand 1 expression and response to the anti-programmed death 1 antibody Pembrolizumab in melanoma. J Clin Oncol 34(34):4102–4109CrossRefGoogle Scholar
  17. Diab A, Tykodi SS, Curti BD, Cho DC, Wong MK, Puzanov I et al (eds) Immune monitoring after NKTR-214 plus nivolumab (PIVOT-02) in previously untreated patients with metastatic stage IV melanoma. Society of Immunotherapy in Cancer (SITC) annual meeting; 2018a, Washington, DCGoogle Scholar
  18. Diab A, Hurwitz ME, Cho DC, Papadimitrakopoulou V, Curti BD, Tykodi SS et al (eds) NKTR-214 (CD122-biased agonist) plus nivolumab in patients with advanced solid tumors: Preliminary phase 1/2 results of PIVOT. ASCO 2018 annual meeting, 2018b, Chicago. J Clin OncolGoogle Scholar
  19. Dummer R, Ascierto PA, Gogas HJ, Arance A, Mandala M, Liszkay G et al (2018) Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF-mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 19(5):603–615Google Scholar
  20. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998CrossRefGoogle Scholar
  21. Fisher B, Redmond C, Poisson R, Margolese R, Wolmark N, Wickerham L et al (1989) Eight-year results of a randomized clinical trial comparing total mastectomy and lumpectomy with or without irradiation in the treatment of breast cancer. N Engl J Med 320(13):822–828CrossRefGoogle Scholar
  22. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6(11):1142–1151CrossRefGoogle Scholar
  23. Frei E 3rd, Holland JF, Schneiderman MA, Pinkel D, Selkirk G, Freireich EJ et al (1958) A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood 13(12):1126–1148PubMedGoogle Scholar
  24. Fyfe G, Fisher RI, Rosenberg SA, Sznol M, Parkinson DR, Louie AC (1995) Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13(3):688–696CrossRefGoogle Scholar
  25. Gainor JF, Shaw AT, Sequist LV, Fu X, Azzoli CG, Piotrowska Z et al (2016) EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung Cancer: a retrospective analysis. Clin Cancer Res 22(18):4585–4593CrossRefGoogle Scholar
  26. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R et al (2013) Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med 369(2):134–144CrossRefGoogle Scholar
  27. Hamid O, Gajewski TF, Frankel AE, Bauer TM, Olszanski AJ, Luke JJ, et al (eds) Epacadostat plus Pembrolizumab in patients with advanced melanoma: phase 1 and 2 efficacy and safety results from ECHO-202/KEYNOTE-037. ESMO annual meeting, 2017, Madrid, ESPGoogle Scholar
  28. Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV et al (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A 100(8):4712–4717CrossRefGoogle Scholar
  29. Hodi FS, Butler M, Oble DA, Seiden MV, Haluska FG, Kruse A et al (2008) Immunologic and clinical effects of antibody blockade of cytotoxic T lymphocyte-associated antigen 4 in previously vaccinated cancer patients. Proc Natl Acad Sci U S A 105(8):3005–3010CrossRefGoogle Scholar
  30. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723CrossRefGoogle Scholar
  31. Hu JC, Coffin RS, Davis CJ, Graham NJ, Groves N, Guest PJ et al (2006) A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin Cancer Res 12(22):6737–6747CrossRefGoogle Scholar
  32. Imai K, Takaoka A (2006) Comparing antibody and small-molecule therapies for cancer. Nat Rev Cancer 6(9):714–727CrossRefGoogle Scholar
  33. Jerby-Arnon L, Shah P, Cuoco MS, Rodman C, Su MJ, Melms JC et al (2018) A Cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175(4):984–97.e24CrossRefGoogle Scholar
  34. Johnson DB, Lovly CM, Flavin M, Panageas KS, Ayers GD, Zhao Z et al (2015) Impact of NRAS mutations for patients with advanced melanoma treated with immune therapies. Cancer Immunol Res 3(3):288–295CrossRefGoogle Scholar
  35. Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X et al (2016) Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res 4(11):959–967CrossRefGoogle Scholar
  36. Joseph RW, Sullivan RJ, Harrell R, Stemke-Hale K, Panka D, Manoukian G et al (2012) Correlation of NRAS mutations with clinical response to high-dose IL-2 in patients with advanced melanoma. J Immunother 35(1):66–72CrossRefGoogle Scholar
  37. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol 14(1):7–17CrossRefGoogle Scholar
  38. Kirkwood JM, Manola J, Ibrahim J, Sondak V, Ernstoff MS, Rao U (2004) A pooled analysis of eastern cooperative oncology group and intergroup trials of adjuvant high-dose interferon for melanoma. Clin Cancer Res 10(5):1670–1677CrossRefGoogle Scholar
  39. Korn EL, Liu PY, Lee SJ, Chapman JA, Niedzwiecki D, Suman VJ et al (2008) Meta-analysis of phase II cooperative group trials in metastatic stage IV melanoma to determine progression-free and overall survival benchmarks for future phase II trials. J Clin Oncol 26(4):527–534CrossRefGoogle Scholar
  40. Larkin J, Ascierto PA, Dreno B, Atkinson V, Liszkay G, Maio M et al (2014) Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N Engl J Med 371(20):1867–1876CrossRefGoogle Scholar
  41. Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD et al (2015) Combined Nivolumab and Ipilimumab or monotherapy in untreated melanoma. N Engl J Med 373(1):23–34CrossRefGoogle Scholar
  42. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271(5256):1734–1736CrossRefGoogle Scholar
  43. Lebbé C, Meyer N, Mortier L, Marquez-Rodas I, Robert C, Rutkowski P et al (eds) Initial results from a phase 3b/4 study evaluating two dosing regimens of nivolumab (NIVO) in combination with ipilimumab (IPI) in patients with advanced melanoma. ESMO annual meeting, 2018, MunichGoogle Scholar
  44. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F, Larkin J et al (2015) Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: a multicentre, double-blind, phase 3 randomised controlled trial. Lancet 386(9992):444–451CrossRefGoogle Scholar
  45. Long GV, Atkinson V, Cebon JS, Jameson MB, Fitzharris BM, McNeil CM et al (eds) Long-term follow-up of standard-dose pembrolizumab plus reduced-dose ipilimumab in 153 patients with advanced melanoma: KEYNOTE-029 1B. Society for Melanoma Research Annual Congress, 2018a, ManchesterGoogle Scholar
  46. Long GV, Dummer R, Hamid O, Gajewski TF, Caglevic C, Dalle S et al (eds) Epacadostat plus Pembrolizumab versus Pembrolizumab alone in patients with Unresectable or metastatic melanoma: results of the phase 3 ECHO-301/KEYNOTE-252 study. ASCO annual meeting, 2018b, ChicagoGoogle Scholar
  47. Maker AV, Phan GQ, Attia P, Yang JC, Sherry RM, Topalian SL et al (2005) Tumor regression and autoimmunity in patients treated with cytotoxic T lymphocyte-associated antigen 4 blockade and interleukin 2: a phase I/II study. Ann Surg Oncol 12(12):1005–1016CrossRefGoogle Scholar
  48. Martens A, Wistuba-Hamprecht K, Geukes Foppen M, Yuan J, Postow MA, Wong P et al (2016) Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with Ipilimumab. Clin Cancer Res 22(12):2908–2918CrossRefGoogle Scholar
  49. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H et al (2018) Tisagenlecleucel in children and Young adults with B-cell lymphoblastic leukemia. N Engl J Med 378(5):439–448CrossRefGoogle Scholar
  50. Maus MV, June CH (2016) Making better chimeric antigen receptors for adoptive T-cell therapy. Clin Cancer Res 22(8):1875–1884CrossRefGoogle Scholar
  51. Mier JW, Gallo RC (1980) Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media. Proc Natl Acad Sci U S A 77(10):6134–6138CrossRefGoogle Scholar
  52. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA (2010) Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 18(4):843–851CrossRefGoogle Scholar
  53. Morton DL, Eilber FR, Holmes EC, Hunt JS, Ketcham AS, Silverstein MJ et al (1974) BCG immunotherapy of malignant melanoma: summary of a seven-year experience. Ann Surg 180(4):635–643CrossRefGoogle Scholar
  54. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA et al (2017) Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 377(26):2531–2544CrossRefGoogle Scholar
  55. Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23(1):41–56CrossRefGoogle Scholar
  56. Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT et al (2016) Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov 6(2):202–216CrossRefGoogle Scholar
  57. Postow MA, Chesney J, Pavlick AC, Robert C, Grossmann K, McDermott D et al (2015) Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med 372(21):2006–2017CrossRefGoogle Scholar
  58. Postow MA, Sidlow R, Hellmann MD (2018) Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 378(2):158–168CrossRefGoogle Scholar
  59. Puzanov I, Milhem MM, Minor D, Hamid O, Li A, Chen L et al (2016) Talimogene Laherparepvec in combination with Ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 34(22):2619–2626CrossRefGoogle Scholar
  60. Puzanov I, Diab A, Abdallah K, Bingham CO 3rd, Brogdon C, Dadu R et al (2017) Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group. J Immunother Cancer 5(1):95CrossRefGoogle Scholar
  61. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116(7):1935–1945CrossRefGoogle Scholar
  62. Ribas A, Puzanov I, Dummer R, Schadendorf D, Hamid O, Robert C et al (2015) Pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory melanoma (KEYNOTE-002): a randomised, controlled, phase 2 trial. Lancet Oncol 16(8):908–918CrossRefGoogle Scholar
  63. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O et al (2017) Oncolytic virotherapy promotes Intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109–19.e10CrossRefGoogle Scholar
  64. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al (2011) Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 29(7):917–924CrossRefGoogle Scholar
  65. Robert C, Schachter J, Long GV, Arance A, Grob JJ, Mortier L et al (2015a) Pembrolizumab versus Ipilimumab in Advanced Melanoma. N Engl J Med 372(26):2521–2532CrossRefGoogle Scholar
  66. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A, Stroiakovski D et al (2015b) Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 372(1):30–39CrossRefGoogle Scholar
  67. Rosenberg SA (2011) Cell transfer immunotherapy for metastatic solid cancer – what clinicians need to know. Nat Rev Clin Oncol 8(10):577–585CrossRefGoogle Scholar
  68. Rosenberg SA, Eberlein TJ, Grimm EA, Lotze MT, Mazumder A, Rosenstein M (1982) Development of long-term cell lines and lymphoid clones reactive against murine and human tumors: a new approach to the adoptive immunotherapy of cancer. Surgery 92(2):328–336PubMedGoogle Scholar
  69. Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ et al (2011) Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res 17(13):4550–4557CrossRefGoogle Scholar
  70. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW et al (2018) Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell 175(4):998–1013.e20CrossRefGoogle Scholar
  71. Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O et al (2015) Pooled analysis of Long-term survival data from phase II and phase III trials of Ipilimumab in unresectable or metastatic melanoma. J Clin Oncol 33(17):1889–1894CrossRefGoogle Scholar
  72. Shahabi V, Whitney G, Hamid O, Schmidt H, Chasalow SD, Alaparthy S et al (2012) Assessment of association between BRAF-V600E mutation status in melanomas and clinical response to ipilimumab. Cancer Immunol Immunother 61(5):733–737CrossRefGoogle Scholar
  73. Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J et al (2015) Beyond BRAF(V600): clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol 135(2):508–515CrossRefGoogle Scholar
  74. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S et al (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21(17):3343–3350CrossRefGoogle Scholar
  75. Spranger S, Bao R, Gajewski TF (2015) Melanoma-intrinsic beta-catenin signalling prevents anti-tumour immunity. Nature 523(7559):231–235CrossRefGoogle Scholar
  76. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL et al (2012) Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4(127):127ra37CrossRefGoogle Scholar
  77. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366(26):2443–2454CrossRefGoogle Scholar
  78. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L et al (2014) PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515(7528):568–571CrossRefGoogle Scholar
  79. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350(6257):207–211CrossRefGoogle Scholar
  80. Weber JS, O'Day S, Urba W, Powderly J, Nichol G, Yellin M et al (2008) Phase I/II study of ipilimumab for patients with metastatic melanoma. J Clin Oncol 26(36):5950–5956CrossRefGoogle Scholar
  81. Weber JS, Dummer R, de Pril V, Lebbe C, Hodi FS (2013) Patterns of onset and resolution of immune-related adverse events of special interest with ipilimumab: detailed safety analysis from a phase 3 trial in patients with advanced melanoma. Cancer 119(9):1675–1682CrossRefGoogle Scholar
  82. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B et al (2015) Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): a randomised, controlled, open-label, phase 3 trial. Lancet Oncol 16(4):375–384CrossRefGoogle Scholar
  83. Weber JS, Sznol M, Sullivan RJ, Blackmon S, Boland G, Kluger HM et al (2018) A serum protein signature associated with outcome after anti-PD-1 therapy in metastatic melanoma. Cancer Immunol Res 6(1):79–86CrossRefGoogle Scholar
  84. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM et al (2013) Nivolumab plus Ipilimumab in advanced melanoma. New Eng J Med 369:122CrossRefGoogle Scholar
  85. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob JJ, Cowey CL et al (2017) Overall survival with combined Nivolumab and Ipilimumab in advanced melanoma. N Engl J Med 377(14):1345–1356CrossRefGoogle Scholar
  86. Yang JC, Hughes M, Kammula U, Royal R, Sherry RM, Topalian SL et al (2007) Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 30(8):825–830CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for MelanomaMGH Cancer CenterBostonUSA
  2. 2.Dana Farber Cancer InstituteBostonUSA
  3. 3.Department of Medicine, Brigham and Women’s HospitalDana-Farber Cancer InstituteBostonUSA

Section editors and affiliations

  • David E. Fisher
    • 1
  • Nick Hayward
    • 2
  • David C. Whiteman
    • 3
  • Keith T. Flaherty
    • 4
  • F. Stephen Hodi
    • 5
    • 6
  • Hensin Tsao
    • 7
    • 8
  • Glenn Merlino
    • 9
  1. 1.Department of Dermatology, Harvard/MGH Cutaneous Biology Research Center, and Melanoma Program, MGH Cancer CenterMassachusetts General Hospital, Harvard Medical SchoolBostonUSA
  2. 2.QIMR Berghofer Medical Research InstituteHerstonAustralia
  3. 3.QIMR Berghofer Medical Research InstituteHerstonAustralia
  4. 4.Henri and Belinda Termeer Center for Targeted TherapiesMGH Cancer CenterCambridgeUSA
  5. 5.FraminghamUSA
  6. 6.Department of Medicine, Brigham and Women's HospitalDana-Farber Cancer InstituteBostonUSA
  7. 7.AuburndaleUSA
  8. 8.Harvard-MIT Health Sciences and TechnologyCambridgeUSA
  9. 9.Center for Cancer ResearchNational Cancer InstituteBethesdaUSA

Personalised recommendations