Encyclopedia of Computational Neuroscience

Living Edition
| Editors: Dieter Jaeger, Ranu Jung

Computational Modeling of Olfactory Behavior

  • Christiane LinsterEmail author
  • Thomas A. Cleland
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4614-7320-6_607-2


Computational modeling is an essential tool for developing an understanding of how nervous systems compute. This is particularly so for questions that span levels of analysis, attempting to integrate cellular, neuromodulatory, and electrophysiological data with behavioral performance. In neuroscience, computational techniques are used to study the mechanisms underlying neuronal or network responses to simple and complex inputs, analyze interactions among the parameters governing the properties of a neuron or network, and determine the coordinated mechanisms that underlie experimentally observed rich phenomena such as coherent oscillations or synaptic plasticity. In particular, computational modeling has been successful in associating neural activity with behavioral function, proposing neurophysiological mechanisms for observed behavioral capabilities, and generating novel, testable hypotheses. In our lab, computational models of behavioral phenomena have enabled us to...

This is a preview of subscription content, log in to check access.


  1. Banerjee A, Marbach F, Anselmi F, Koh MS, Davis MB, Garcia da Silva P, Delevich K, Oyibo HK, Gupta P, Li B, Albeanu DF (2015) An interglomerular circuit gates glomerular output and implements gain control in the mouse olfactory bulb. Neuron 87:193–207CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bhagavan S, Smith BH (1997) Olfactory conditioning in the honey bee, Apis mellifera: effects of odor intensity. Physiol Behav 61:107–117CrossRefPubMedGoogle Scholar
  3. Castillo PE, Carleton A, Vincent JD, Lledo PM (1999) Multiple and opposing roles of cholinergic transmission in the main olfactory bulb. J Neurosci 19:9180–9191CrossRefPubMedGoogle Scholar
  4. Chaudhury D, Escanilla O, Linster C (2009) Bulbar acetylcholine enhances neural and perceptual odor discrimination. J Neurosci 29:52–60CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cleland TA, Linster C (1999) Concentration tuning mediated by spare receptor capacity in olfactory sensory neurons: a theoretical study. Neural Comput 11:1673–1690CrossRefPubMedGoogle Scholar
  6. Cleland TA, Linster C (2002) How synchronization properties among second-order sensory neurons can mediate stimulus salience. Behav Neurosci 116:212–221CrossRefPubMedGoogle Scholar
  7. Cleland TA, Sethupathy P (2006) Non-topographical contrast enhancement in the olfactory bulb. BMC Neurosci 7:7CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cleland TA, Morse A, Yue EL, Linster C (2002) Behavioral models of odor similarity. Behav Neurosci 116:222–231CrossRefPubMedGoogle Scholar
  9. Cleland TA, Johnson BA, Leon M, Linster C (2007) Relational representation in the olfactory system. Proc Natl Acad Sci U S A 104:1953–1958CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cleland TA, Chen SY, Hozer KW, Ukatu HN, Wong KJ, Zheng F (2012) Sequential mechanisms underlying concentration invariance in biological olfaction. Front Neuroeng 4:21CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cleland TA, Linster C (2012) On-center/inhibitory-surround decorrelation via intraglomerular inhibition in the olfactory bulb glomerular layer. Front Integr Neurosci 6:5.  https://doi.org/10.3389/fnint.2012.00005
  12. David F, Linster C, Cleland TA (2008) Lateral dendritic shunt inhibition can regularize mitral cell spike patterning. J Comput Neurosci 25:25–38CrossRefPubMedGoogle Scholar
  13. de Almeida L, Idiart M, Linster C (2013) A model of cholinergic modulation in olfactory bulb and piriform cortex. J Neurophysiol 109:1360–1377CrossRefPubMedGoogle Scholar
  14. de Almeida L, Reiner SJ, Ennis M, Linster C (2015) Computational modeling suggests distinct, location-specific function of norepinephrine in olfactory bulb and piriform cortex. Front Comput Neurosci 9:73CrossRefPubMedPubMedCentralGoogle Scholar
  15. de Almeida L, Idiart M, Dean O, Devore S, Smith DM, Linster C (2016) Internal cholinergic regulation of learning and recall in a model of olfactory processing. Front Cell Neurosci 10:256PubMedPubMedCentralGoogle Scholar
  16. Devore S, Linster C (2012) Noradrenergic and cholinergic modulation of olfactory bulb sensory processing. Front Behav Neurosci 6:52PubMedPubMedCentralGoogle Scholar
  17. Devore S, Manella LC, Linster C (2012) Blocking muscarinic receptors in the olfactory bulb impairs performance on an olfactory short-term memory task. Front Behav Neurosci 6:59PubMedPubMedCentralGoogle Scholar
  18. Devore S, de Almeida L, Linster C (2014) Distinct roles of bulbar muscarinic and nicotinic receptors in olfactory discrimination learning. J Neurosci 34:11244–11260CrossRefPubMedPubMedCentralGoogle Scholar
  19. Escanilla O, Yuhas C, Marzan D, Linster C (2009) Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. Behav Neurosci 123:828–833CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gao Y, Strowbridge BW (2009) Long-term plasticity of excitatory inputs to granule cells in the rat olfactory bulb. Nat Neurosci 12:731–733CrossRefPubMedPubMedCentralGoogle Scholar
  21. Harrison TA, Scott JW (1986) Olfactory bulb responses to odor stimulation: analysis of response pattern and intensity relationships. J Neurophysiol 56:1571–1589CrossRefPubMedGoogle Scholar
  22. Hasselmo ME, Linster C, Patil M, Ma D, Cekic M (1997) Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. J Neurophysiol 77:3326–3339CrossRefPubMedGoogle Scholar
  23. Johnson BA, Leon M (2000) Modular representations of odorants in the glomerular layer of the rat olfactory bulb and the effects of stimulus concentration. J Comp Neurol 422:496–509CrossRefPubMedGoogle Scholar
  24. Johnson BA, Woo CC, Hingco EE, Pham KL, Leon M (1999) Multidimensional chemotopic responses to n-aliphatic acid odorants in the rat olfactory bulb. J Comp Neurol 409:529–548CrossRefPubMedGoogle Scholar
  25. Kiyokage E, Pan YZ, Shao Z, Kobayashi K, Szabo G, Yanagawa Y, Obata K, Okano H, Toida K, Puche AC, Shipley MT (2010) Molecular identity of periglomerular and short axon cells. J Neurosci 30:1185–1196CrossRefPubMedPubMedCentralGoogle Scholar
  26. Li G, Cleland TA (2013) A two-layer biophysical model of cholinergic neuromodulation in olfactory bulb. J Neurosci 33:3037–3058CrossRefPubMedPubMedCentralGoogle Scholar
  27. Li G, Cleland TA (2017) A coupled-oscillator model of olfactory bulb gamma oscillations. PLoS Comput Biol 13:e1005760CrossRefPubMedPubMedCentralGoogle Scholar
  28. Li G, Linster C, Cleland TA (2015) Functional differentiation of cholinergic and noradrenergic modulation in a biophysical model of olfactory bulb granule cells. J Neurophysiol 114:3177–3200CrossRefPubMedPubMedCentralGoogle Scholar
  29. Linster C, Kerszberg M, Masson C (1994) How neurons may compute: the case of insect sexual pheromone discrimination. J Comput Neurosci 1(3):231–238CrossRefPubMedGoogle Scholar
  30. Linster C, Cleland TA (2001) How spike synchronization among olfactory neurons can contribute to sensory discrimination. J Comput Neurosci 10:187–193CrossRefPubMedGoogle Scholar
  31. Linster C, Cleland TA (2002) Cholinergic modulation of sensory representations in the olfactory bulb. Neural Netw 15:709–717CrossRefPubMedGoogle Scholar
  32. Linster C, Cleland TA (2004) Configurational and elemental odor mixture perception can arise from local inhibition. J Comput Neurosci 16:39–47CrossRefPubMedGoogle Scholar
  33. Linster C, Cleland TA (2010) Decorrelation of odor representations via spike timing-dependent plasticity. Front Comput Neurosci 4:157PubMedPubMedCentralGoogle Scholar
  34. Linster C, Gervais R (1996) Investigation of the role of interneurons and their modulation by centrifugal fibers in a neural model of the olfactory bulb. J Comput Neurosci 3:225–246CrossRefPubMedPubMedCentralGoogle Scholar
  35. Linster C, Hasselmo M (1997) Modulation of inhibition in a model of olfactory bulb reduces overlap in the neural representation of olfactory stimuli. Behav Brain Res 84:117–127CrossRefGoogle Scholar
  36. Linster C, Johnson BA, Yue E, Morse A, Xu Z, Hingco EE, Choi Y, Choi M, Messiha A, Leon M (2001) Perceptual correlates of neural representations evoked by odorant enantiomers. J Neurosci 21:9837–9843CrossRefGoogle Scholar
  37. Linster C, Maloney M, Patil M, Hasselmo ME (2003) Enhanced cholinergic suppression of previously strengthened synapses enables the formation of self-organized representations in olfactory cortex. Neurobiol Learn Mem 80:302–314CrossRefGoogle Scholar
  38. Linster C, Henry L, Kadohisa M, Wilson DA (2007) Synaptic adaptation and odor-background segmentation. Neurobiol Learn Mem 87:352–360CrossRefGoogle Scholar
  39. Linster C, Menon AV, Singh CY, Wilson DA (2009) Odor-specific habituation arises from interaction of afferent synaptic adaptation and intrinsic synaptic potentiation in olfactory cortex. Learn Mem 16:452–459CrossRefPubMedPubMedCentralGoogle Scholar
  40. Linster C, Nai Q, Ennis M (2011) Nonlinear effects of noradrenergic modulation of olfactory bulb function in adult rodents. J Neurophysiol 105:1432–1443CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mandairon N, Ferretti CJ, Stack CM, Rubin DB, Cleland TA, Linster C (2006a) Cholinergic modulation in the olfactory bulb influences spontaneous olfactory discrimination in adult rats. Eur J Neurosci 24:3234–3244CrossRefPubMedPubMedCentralGoogle Scholar
  42. Mandairon N, Stack C, Kiselycznyk C, Linster C (2006b) Broad activation of the olfactory bulb produces long-lasting changes in odor perception. Proc Natl Acad Sci U S A 103:13543–13548CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mandairon N, Kermen F, Charpentier C, Sacquet J, Linster C, Didier A (2014) Context-driven activation of odor representations in the absence of olfactory stimuli in the olfactory bulb and piriform cortex. Front Behav Neurosci 8:138CrossRefPubMedPubMedCentralGoogle Scholar
  44. Marr D (1982) Vision: a computational approach. Freeman & Co, San FranciscoGoogle Scholar
  45. McIntyre ABR, Cleland TA (2016) Biophysical constraints on lateral inhibition in the olfactory bulb. J Neurophysiol 115(6):2937–2949.  https://doi.org/10.1152/jn.00671.2015CrossRefPubMedPubMedCentralGoogle Scholar
  46. Meister M, Bonhoeffer T (2001) Tuning and topography in an odor map on the rat olfactory bulb. J Neurosci 21:1351–1360CrossRefPubMedGoogle Scholar
  47. Meredith M (1986) Patterned response to odor in mammalian olfactory bulb: the influence of intensity. J Neurophysiol 56:572–597CrossRefPubMedGoogle Scholar
  48. Pressler RT, Inoue T, Strowbridge BW (2007) Muscarinic receptor activation modulates granule cell excitability and potentiates inhibition onto mitral cells in the rat olfactory bulb. J Neurosci 27:10969–10981CrossRefPubMedGoogle Scholar
  49. Song S, Miller KD, Abbott LF (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926CrossRefPubMedGoogle Scholar
  50. Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74CrossRefPubMedGoogle Scholar
  51. Stopfer M, Jayaraman V, Laurent G (2003) Intensity versus identity coding in an olfactory system. Neuron 39:991–1004CrossRefPubMedGoogle Scholar
  52. Strauch M, Ditzen M, Galizia CG (2012) Keeping their distance? Odor response patterns along the concentration range. Front Syst Neurosci 6:71CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wei CJ, Linster C, Cleland TA (2006) Dopamine D(2) receptor activation modulates perceived odor intensity. Behav Neurosci 120(2):393–400Google Scholar
  54. Wellis DP, Scott JW, Harrison TA (1989) Discrimination among odorants by single neurons of the rat olfactory bulb. J Neurophysiol 61:1161–1177CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Computational Physiology Lab, Department of Neurobiology and BehaviorCornell UniversityIthacaUSA
  2. 2.Computational Physiology Lab, Department of PsychologyCornell UniversityIthacaUSA

Section editors and affiliations

  • Michele Migliore
    • 1
    • 2
  1. 1.Department of NeurobiologyYale University School of MedicineNew HavenUSA
  2. 2.Institute of BiophysicsNational Research CouncilPalermoItaly