Nonlinear Innovations

  • Karl H. MüllerEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6616-1_312-2
  • 2 Downloads

Synonyms

Analysis of Nonlinear Innovations

This entry will start, first, with a very short discussion of a set of linear models of innovations which are usually characterized by two important features. On the one hand, these models are specified in sequential stages and linearity and thus refer to a set of different innovation stages which have to be passed in time consecutively. On the other hand, linearity can be linked to the types of relations between these different stages which can be assumed as linear as well.

As a next step, these linear models will be transformed into nonlinear configurations. Here the focus shifts to nonlinear aspects of innovation processes as well as to the still predominant Schumpeterian framework for the cyclical diffusion of innovations.

The third part of this entry will advance a general nonlinear innovation framework which is largely based on complex,...

This is a preview of subscription content, log in to check access.

Bibliography

  1. Arthur WB. Increasing returns and path dependence in the economy. Ann Arbor: University of Michigan Press; 1994.CrossRefGoogle Scholar
  2. Arthur WB. The nature of technology: what it is and how it evolves. New York: Free Press; 2009.Google Scholar
  3. Ayres RU. Did the fifth K-wave begin in 1990–92? Has it been Aborted by Globalization?. In Devezas TC. op.cit.; 2006. p. 57–71.Google Scholar
  4. Bak P. How nature works. The science of self-organized criticality. New York: Springer; 1996.Google Scholar
  5. Barabási AL. Linked: the new science of networks. Cambridge: Perseus; 2000.Google Scholar
  6. Barabasi ASL. Bursts. The hidden pattern behind everything we do. New York: Dutton Books; 2010.Google Scholar
  7. Barenblatt GI. Scaling. Cambridge: Cambridge University Press; 2003.CrossRefGoogle Scholar
  8. Boyer R, Saillard Y, editors. Regulation theory. The state of the art. London: Routledge; 2002.Google Scholar
  9. Buchanan M. Nexus: small worlds and the groundbreaking science of networks. New York: Norton; 2002.Google Scholar
  10. Devezas TC, editor. Kondratieff waves, warfare and world security. Amsterdam: IOS Press; 2006.Google Scholar
  11. Dorogovtsev SN. Lectures on complex networks. Oxford: Oxford University Press; 2010.CrossRefGoogle Scholar
  12. Easley D, Kleiberg J. Networks, crowds, and markets. Cambridge: Cambridge University Press; 2010.CrossRefGoogle Scholar
  13. Everett R. The diffusion of innovations. 5th ed. New York: Free Press; 2003.Google Scholar
  14. Fagerberg J, Mowery DC, Nelson RR, editors. The Oxford handbook of innovation. Oxford: Oxford University Press; 2007.Google Scholar
  15. Fogel RW. Railroads and American economic growth: essays in econometric history. Baltimore: Johns Hopkins University Press; 1964.Google Scholar
  16. Freeman C, editor. Long waves in the world economy. London: Butterworths; 1983.Google Scholar
  17. Freeman C. Technology and economic performance. Lessons from Japan. London: Frances Pinter; 1987.Google Scholar
  18. Freeman C, Soete L. Work for all or mass unemployment. Computerised technical change into the 21st century. London: Frances Pinter; 1994.Google Scholar
  19. Freeman C, Soete L. The economics of industrial innovation. 3rd ed. London: Frances Pinter; 1997.Google Scholar
  20. Freeman C, Clark J, Soete L. Unemployment and technical innovation. A study of long waves and economic development. London: Frances Pinter; 1982.Google Scholar
  21. Friedman E, editor. Ascent and decline in the world-system. Beverly Hills: Sage; 1982.Google Scholar
  22. Fröbel F, Heinrichs J, Kreye O, editors. Krisen in der kapitalistischen Weltökonomie. Reinbek: Rowohlt; 1981.Google Scholar
  23. Gershuny J. Social innovation and the division of labour. Oxford: Oxford University Press; 1983.Google Scholar
  24. Hage J, Hollingsworth JR. A strategy for the analysis of idea innovation networks and institutions. Organ Stud. 2000;5:971–1004.CrossRefGoogle Scholar
  25. Hoffmann WG. Das Wachstum der deutschen Wirtschaft seit der Mitte des 19. Jahrhunderts. Berlin: de Gruyter; 1965.CrossRefGoogle Scholar
  26. Hollingsworth JR, Hollingswort EJ. Major discoveries, creativity, and the dynamics of science. Vienna: edition echoraum; 2011.Google Scholar
  27. Hollingsworth JR, Müller KH. Transforming socio-economics with a new epistemology. Soc Econ Rev. 2008;3(6):395–426.CrossRefGoogle Scholar
  28. Hopkins TK, Wallerstein I, editors. Processes of the world system. Beverly Hills: Sage; 1980.Google Scholar
  29. Jackson MO. Social and economic networks. Princeton: Princeton University Press; 2008.CrossRefGoogle Scholar
  30. Jensen HJ. Self-organized criticality. Emergent complex behavior in physical and biological systems. Cambridge: Cambridge University Press; 1996.Google Scholar
  31. Laughlin RB. A different universe. Reinventing physics from the bottom down. New York: Basic Books; 2005.Google Scholar
  32. Leydesdorff L. The knowledge-based economy. Modeled, measured, simulated. Boca Raton: Universal Publishers; 2006.Google Scholar
  33. Lundval BA. National systems of innovation: towards a theory of innovation and interactive learning. London: Pinter; 1992.Google Scholar
  34. McComb WD. Renormalization methods. A guide for beginners. Oxford: Oxford University Press; 2004.Google Scholar
  35. Mensch G. Das technologische Patt. Innovationen überwinden die Depression. Frankfurt: Fischer; 1977.Google Scholar
  36. Mensch G. Stalemate in technology. Innovations Ovecome the depression. Cambridge: Ballinger; 1978.Google Scholar
  37. Mote JE, Hage JT, Whitestone YK, Jordan GB. Innovation, networks, and the research environment: examining the linkages. Int J Foresight Innov Policy. 2008;3/4:246–64.CrossRefGoogle Scholar
  38. Müller KH. Marktentfaltung und Wissensintegration. Doppelbewegungen in der Moderne. Frankfurt/New York: Campus Verlag; 1999.Google Scholar
  39. Müller KH. RISC-processes and societal coevolution: towards a common framework. In: Kajfež-Bogataj L, Müller KH, Svetlik I, Toš N, editors. Modern RISC-societies. Towards a new paradigm for societal evolution. Wien: edition echoraum; 2010a. p. 63–113.Google Scholar
  40. Müller KH. Wissenschaft, Wirtschaft und Gesellschaft in Österreich: Eine dynamische Netzwerkperspektive. In: Biegelbauer P, editor. Steuerung von Wissenschaft? Die Governance des österreichischen Innovationssystems. Innsbruck: StudienVerlag; 2010b. p. 187–222. isbn:978-3-7065-4834-2.Google Scholar
  41. Müller KH. The new science of cybernetics. The evolution of living research designs, vol. II: theory. Wien: edition echoraum; 2011. isbn:978-3-901941-16-0.Google Scholar
  42. Nelson RR, editor. National innovation systems: a comparative analysis. Oxford: Oxford University Press; 1993.Google Scholar
  43. Nelson RR. Technology, institutions and economic growth. Cambridge, MA: Harvard University Press; 2005.Google Scholar
  44. Nelson RR, Winter SG. An evolutionary theory of economic change. Cambridge, MA: Harvard University Press; 1982.Google Scholar
  45. Newman M. Power Laws, Pareto distributions and Zipf’s Law. Contemp Phys. 2005;46:323–51.CrossRefGoogle Scholar
  46. Newman MEJ. Networks. An introduction. Oxford: Oxford University Press; 2010.CrossRefGoogle Scholar
  47. Newman M, Barabási AL, Watts DJ, editors. The structure and dynamics of networks. Princeton: Princeton University Press; 2006.Google Scholar
  48. Ong NP, Bhatt RN, editors. More is different. Fifty years of condensed matter physics. Princeton: Princeton University Press; 2001.Google Scholar
  49. Schumpeter JA. Theorie der wirtschaftlichen Entwicklung. Eine Untersuchung über Unternehmergewinn, Kapital, Kredit, Zins und den Konkunkturzyklus. 5th ed. Berlin: de Gruyter; 1952.Google Scholar
  50. Schumpeter JA. Konjunkturzyklen. Eine theoretische, historische und statistische Analyse des kapitalistischen Prozesses. 2 vol. Göttingen: Vandenhoeck&Ruprecht; 1961.Google Scholar
  51. Schumpeter JA. Kapitalismus, Sozialismus und Demokratie. 4th ed. München: UTB; 1975.Google Scholar
  52. Schumpeter JA. Business cycles. A theoretical, historical and statistical analysis of the capitalist process. Philadelphia: McGraw-Hill; 1989.Google Scholar
  53. Sornette D. Why stock markets crash: critical events in complex financial systems. Princeton: Princeton University Press; 2003.Google Scholar
  54. Sornette D. Critical phenomena in natural sciences: Chaos, fractals, Selforganization and disorder: concepts and tools. 2nd ed. Berlin: Springer; 2006.Google Scholar
  55. Sornette D. Probability distributions in complex systems. In: Meyers RA, editor. Computational complexity. Theory, techniques and applications. New York: Springer; 2012. p. 2286–300.Google Scholar
  56. Sornette D, Cauwels P. Financial bubbles: mechanism, diagnostic and state of the world. Notenstein white paper series; 2014.Google Scholar
  57. Spree R. Die Wachstumszyklen der deutschen Wirtschaft von 1840 bis 1880. Berlin: Duncker & Humblot; 1977.Google Scholar
  58. Utterback JM. Mastering the dynamics of innovation. Harvard: Harvard Business Press; 1996.Google Scholar
  59. Watts DJ. Small worlds: the dynamics of networks between order and randomness. Princeton: Princeton University Press; 1999.CrossRefGoogle Scholar
  60. Watts DJ. Six degrees: the science of a connected age. New York: Norton; 2003.Google Scholar
  61. Watts DJ. The ‘new’ science of networks. Annu Rev Sociol. 2004;30:243–70.CrossRefGoogle Scholar
  62. Weidlich W. Sociodynamics. A systematic approach to mathematical modleing in the social sciences. London: Taylor & Francis; 2000.Google Scholar
  63. Weidlich W, Haag G. Concepts and models of a quantitative sociology. The dynamics of interacting populations. Berlin: Springer; 1983.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Steinbeis Transfer Center New CyberneticsViennaAustria

Section editors and affiliations

  • David F. J. Campbell
    • 1
    • 2
    • 3
    • 4
  1. 1.Unit for Quality Enhancement (UQE)University of Applied Arts ViennaViennaAustria
  2. 2.Faculty for Interdisciplinary Studies (iff), Institute of Science Communication and Higher Education Research (WIHO)Alpen-Adria-University KlagenfurtViennaAustria
  3. 3.Department of Political ScienceUniversity of ViennaViennaAustria
  4. 4.Department for Continuing Education Research and Educational Management, Centre for Educational Management and Higher Education DevelopmentDanube University KremsKremsAustria