Encyclopedia of Autism Spectrum Disorders

Living Edition
| Editors: Fred R. Volkmar

Effect of Visual Information on Postural Control in Adults with Autism Spectrum Disorder

  • Yi Huey LimEmail author
  • Hoe Lee
  • Torbjörn Falkmer
  • Susan Morris
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6435-8_102492-1

Definition

Postural control is the ability to keep an upright posture of the body within the base of support. Its purpose is to provide humans with stability and to orientate their bodies to perform a variety of tasks, such as standing, walking, and reaching (Horak 2006; Massion 1994). Postural control relies on a postural control system that is dependent on many aspects of the body (Horak 2006). All aspects of the body, such as the feet size, joint movements, and sensory processing within the brain, provide relevant information to the central nervous system for the control of posture. The context of the surrounding also plays an important role in postural control. Information about the surrounding is picked up by the senses of vision, touch, and hearing and sent to the central nervous system. The central nervous system combines all of the information to make sense of the body position in the context of the surrounding. Any change in the surrounding can affect one’s posture....

This is a preview of subscription content, log in to check access.

References and Reading

  1. American Psychiatric Association. (2015). DSM-5 Classification (5th ed.). Arlington: American Psychiatric Association Publishing.Google Scholar
  2. Doumas, M., McKenna, R., & Murphy, B. (2016). Postural control deficits in autism spectrum disorder: The role of sensory integration. Journal of Autism and Developmental Disorders, 46(3), 853–861.  https://doi.org/10.1007/s10803-015-2621-4.CrossRefPubMedGoogle Scholar
  3. Greffou, S., Bertone, A., Hahler, E. M., Hanssens, J. M., Mottron, L., & Faubert, J. (2012). Postural hypo-reactivity in autism is contingent on development and visual environment: A fully immersive virtual reality study. Journal of Autism and Developmental Disorders, 42(6), 961–970.  https://doi.org/10.1007/s10803-011-1326-6.CrossRefPubMedGoogle Scholar
  4. Happe, F., & Charlton, R. A. (2012). Aging in autism spectrum disorders: A mini-review. Gerontology, 58(1), 70–78.  https://doi.org/10.1159/000329720.CrossRefPubMedGoogle Scholar
  5. Horak, F. B. (2006). Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age and Ageing, 35(Suppl 2), ii7–ii11.  https://doi.org/10.1093/ageing/afl077.CrossRefPubMedGoogle Scholar
  6. Hwang, S., Agada, P., Kiemel, T., & Jeka, J. J. (2016). Identification of the unstable human postural control system. Frontiers in Systems Neuroscience, 10, 22–22.  https://doi.org/10.3389/fnsys.2016.00022.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Kohen-Raz, R., Volkmar, F. R., & Cohen, D. J. (1992). Postural control in children with autism. Journal of Autism and Developmental Disorders, 22(3), 419–432.CrossRefGoogle Scholar
  8. Lim, Y. H., Partridge, K., Girdler, S., & Morris, S. L. (2017). Standing postural control in individuals with autism spectrum disorder: Systematic review and meta-analysis. Journal of Autism and Developmental Disorders, 47(7), 2238–2253.  https://doi.org/10.1007/s10803-017-3144-y.CrossRefPubMedGoogle Scholar
  9. Lim, Y. H., Lee, H. C., Falkmer, T., Allison, G. T., Tan, T., Lee, W. L., & Morris, S. L. (2018a). Effect of optic flow on postural control in children and adults with autism spectrum disorder. Neuroscience, 393, 138–149.  https://doi.org/10.1016/j.neuroscience.2018.09.047.CrossRefPubMedGoogle Scholar
  10. Lim, Y. H., Lee, H. C., Falkmer, T., Allison, G. T., Tan, T., Lee, W. L., & Morris, S. L. (2018b). Effect of visual information on postural control in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders.  https://doi.org/10.1007/s10803-018-3634-6.CrossRefGoogle Scholar
  11. Mancini, M., & Horak, F. B. (2010). The relevance of clinical balance assessment tools to differentiate balance deficits. European Journal of Physical and Rehabilitation Medicine, 46(2), 239–248.PubMedPubMedCentralGoogle Scholar
  12. Markram, K., & Markram, H. (2010). The intense world theory – A unifying theory of the neurobiology of autism. Frontiers in Human Neuroscience, 4(224), 1–29.  https://doi.org/10.3389/fnhum.2010.00224.CrossRefGoogle Scholar
  13. Massion, J. (1994). Postural control system. Current Opinion in Neurobiology, 4(6), 877–887.CrossRefGoogle Scholar
  14. Minshew, N. J., Sung, K., Jones, B. L., & Furman, J. M. (2004). Underdevelopment of the postural control system in autism. Neurology, 63(11), 2056–2061.  https://doi.org/10.1212/01.wnl.0000145771.98657.62.CrossRefPubMedGoogle Scholar
  15. Molloy, C. A., Dietrich, K. N., & Bhattacharya, A. (2003). Postural stability in children with autism spectrum disorder. Journal of Autism and Developmental Disorders, 33(6), 643–652.CrossRefGoogle Scholar
  16. Morris, S. L., Foster, C. J., Parsons, R., Falkmer, M., Falkmer, T., & Rosalie, S. M. (2015). Differences in the use of vision and proprioception for postural control in autism spectrum disorder. Neuroscience, 307, 273–280.  https://doi.org/10.1016/j.neuroscience.2015.08.040.CrossRefPubMedGoogle Scholar
  17. Paillard, T., & Noe, F. (2015). Techniques and methods for testing the postural function in healthy and pathological subjects. BioMed Research International, 2015, 891390.  https://doi.org/10.1155/2015/891390.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Paquet, A., Olliac, B., Golse, B., & Vaivre-Douret, L. (2016). Current knowledge on motor disorders in children with autism spectrum disorder (ASD). Child Neuropsychology, 22(7), 763–794.  https://doi.org/10.1080/09297049.2015.1085501.CrossRefPubMedGoogle Scholar
  19. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2(5), 255–267.CrossRefGoogle Scholar
  20. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739.  https://doi.org/10.1016/j.visres.2009.08.005.CrossRefPubMedGoogle Scholar
  21. Travers, B. G., Powell, P. S., Klinger, L. G., & Klinger, M. R. (2013). Motor difficulties in autism spectrum disorder: Linking symptom severity and postural stability. Journal of Autism and Developmental Disorders, 43(7), 1568–1583.  https://doi.org/10.1007/s10803-012-1702-x.CrossRefPubMedGoogle Scholar
  22. Van de Cruys, S., Evers, K., Van der Hallen, R., Van Eylen, L., Boets, B., de-Wit, L., & Wagemans, J. (2014). Precise minds in uncertain worlds: Predictive coding in autism. Psychological Review, 121(4), 649–675.  https://doi.org/10.1037/a0037665.CrossRefPubMedGoogle Scholar
  23. Westcott, S. L., Lowes, L. P., & Richardson, P. K. (1997). Evaluation of postural stability in children: Current theories and assessment tools. Physical Therapy, 77(6), 629–645.CrossRefGoogle Scholar
  24. Winter, D. A. (1995). Human balance and posture control during standing and walking. Gait & Posture, 3(4), 193–214.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Yi Huey Lim
    • 1
    Email author
  • Hoe Lee
    • 1
  • Torbjörn Falkmer
    • 1
    • 2
  • Susan Morris
    • 3
  1. 1.School of Occupational Therapy, Social Work and Speech PathologyCurtin UniversityPerthAustralia
  2. 2.Pain and Rehabilitation Centre, and Department of Medical and Health SciencesLinköping UniversityLinköpingSweden
  3. 3.School of Physiotherapy and Exercise ScienceCurtin UniversityPerthAustralia