Encyclopedia of Autism Spectrum Disorders

Living Edition
| Editors: Fred R. Volkmar

Tactile Temporal Resolution

Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6435-8_102347-1


Our awareness of surrounding environments is perceived, keeping temporal continuity, which is important for constructing a robust representation of the environment. Temporal limitations to sensory information processing inhibit extraordinal inflow of sensory inputs. For example, in tactile temporal order judgment, in which sensory inputs are successively provided, temporal resolution (as a discriminative limitation) is approximately 50 to 100 (Ide et al. 2019; Takahashi et al. 2013; Yamamoto and Kitazawa 2001). This suggests that we roughly summarize sensory inputs that are delivered within a certain temporal range, as the information of a single unit because of temporal resolution and cognitive processing capacity limitations.

Buhusi and Meck (2005) presented a neural timing process framework which was further sub-divided into three different stages. The millisecond timing stage represents the shortest time scale for neural processing, at ≤1 s, and served speech and motor...

This is a preview of subscription content, log in to check access.

References and Reading

  1. Allman, M. J., & Meck, W. H. (2012). Pathophysiological distortions in time perception and timed performance. Brain, 135(3), 656–677.  https://doi.org/10.1093/brain/awr210.CrossRefPubMedGoogle Scholar
  2. Baumgarten, T. J., Schnitzler, A., & Lange, J. (2015). Beta oscillations define discrete perceptual cycles in the somatosensory domain. Proceedings of the National Academy of Sciences, 112(39), 12187–12192.  https://doi.org/10.1073/pnas.1501438112.CrossRefGoogle Scholar
  3. Bertone, A., Mottron, L., Jelenic, P., & Faubert. (2005). Enhanced and diminished visuo-spatial information processing in autism depends on stimulus complexity. Brain, 128, 2430–2441.  https://doi.org/10.1093/brain/awh561.CrossRefPubMedGoogle Scholar
  4. Brown, C., Tollefson, N., Dunn, W., Cromwell, R., & Filion, D. (2001). The adult sensory profile: Measuring patterns of sensory processing. American Journal of Occupational Therapy, 55, 75–82.CrossRefGoogle Scholar
  5. Buhusi, C. V., & Meck, W. H. (2005). What makes us tick? Functional and neural mechanisms of interval timing. Nature Reviews Neuroscience, 6(10), 755–765.  https://doi.org/10.1038/nrn1764.CrossRefPubMedGoogle Scholar
  6. Cellot, G., & Cherubini, E. (2014). GABAergic signaling as therapeutic target for autism spectrum disorders. Frontiers in Pediatrics, 2, 70.  https://doi.org/10.3389/fped.2014.00070.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Colman, R. S., Frankel, F., Ritvo, E., & Freeman, B. J. (1976). The effects of fluorescent and incandescent illumination upon repetitive behaviors in autistic children. Journal of Autism and Childhood Schizophrenia, 6(2), 157–162.CrossRefGoogle Scholar
  8. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48, 497–507.  https://doi.org/10.1016/j.neuron.2005.10.018.CrossRefPubMedGoogle Scholar
  9. Dunn, W. (2001). The sensations of everyday life: Empirical, theoretical, and pragmatic considerations. American Journal of Occupational Therapy, 55(6), 608–620.CrossRefGoogle Scholar
  10. Falter, M. C., Elliot, A. M., & Bailey, J. A. (2011). Enhanced visual temporal resolution in autism spectrum disorders. PLoS One, 7(3), e32774.  https://doi.org/10.1371/journal.pone.0032774.CrossRefGoogle Scholar
  11. Hirsh, I. J., & Sherrick, C. E., Jr. (1961). Perceived order in different sensory modality. Journal of Experimental Psychology, 62(5), 423–432.  https://doi.org/10.1037/h0045283.CrossRefPubMedGoogle Scholar
  12. Honma, M., Itoi, C., Midorikawa, A., Terao, Y., Masaoka, Y., Kuroda, T., … Kato, N. (2019). Contraction of distance and duration production in autism spectrum disorder. Scientific Reports, 9(1), 8806.Google Scholar
  13. Ide, M., Yaguchi, A., Sano, M., Fukatsu, R., & Wada, M. (2019). Higher tactile temporal resolution as a basis of hypersensitivity in individuals with autism spectrum disorder. Journal of Autism and Developmental Disorders, 49(1), 44–53.  https://doi.org/10.1007/s10803-018-3677-8.
  14. Kim, Y. C., & Narayanan, N. S. (2018). Prefrontal D1 dopamine-receptor neurons and delta resonance in interval timing. Cerebral Cortex, 29(5), 2051–2060.  https://doi.org/10.1093/cercor/bhy083.CrossRefGoogle Scholar
  15. Martin, J. S., Poirier, M., & Bowler, D. M. (2010). Brief report: Impaired temporal reproduction performance in adults with autism spectrum disorder. Journal of Autism and Developmental Disorders, 40(5), 640–646.  https://doi.org/10.1007/s10803-009-0904-3.CrossRefPubMedGoogle Scholar
  16. Meck, W. H. (1996). Neuropharmacology of timing and time perception. Brain Research. Cognitive Brain Research, 3(3–4), 227–242. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8806025.CrossRefGoogle Scholar
  17. Meck, W. H., Church, R. M., & Matell, M. S. (2013). Hippocampus, time, and memory – A retrospective analysis. Behavioral Neuroscience, 127(5), 642–654.  https://doi.org/10.1037/a0034201.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Miyazaki, M., Kadota, H., Matsuzaki, K. S., Takeuchi, S., Sekiguchi, H., Aoyama, T., & Kochiyama, T. (2016). Dissociating the neural correlates of tactile temporal order and simultaneity judgements. Scientific Reports, 6(1), 23323.  https://doi.org/10.1038/srep23323.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Otsuru, N., Kamijo, K., Otsuki, T., Kojima, S., Miyaguchi, S., Saito, K., … Onishi, H. (2019). 10 Hz transcranial alternating current stimulation over posterior parietal cortex facilitates tactile temporal order judgment. Behavioural Brain Research, 368, 111899.  https://doi.org/10.1016/j.bbr.2019.111899.
  20. Puts, N. A. J., Edden, R. A. E., Evans, C. J., McGlone, F., & McGonigle, D. J. (2011). Regionally specific human GABA concentration correlates with tactile discrimination thresholds. Journal of Neuroscience, 31(46), 16556–16560.  https://doi.org/10.1523/JNEUROSCI.4489-11.2011.CrossRefPubMedGoogle Scholar
  21. Samaha, J., & Postle, B. R. (2015). The speed of alpha-band oscillations predicts the temporal resolution of visual perception. Current Biology, 25(22), 2985–2990.  https://doi.org/10.1016/j.cub.2015.10.007.CrossRefPubMedGoogle Scholar
  22. Soares, S., Atallah, B. V., & Paton, J. J. (2016). Midbrain dopamine neurons control judgment of time. Science, 354(6317), 1273–1277.  https://doi.org/10.1126/science.aah5234.CrossRefPubMedGoogle Scholar
  23. Takahashi, T., & Kitazawa, S. (2017). Modulation of illusory reversal in tactile temporal order by the phase of posterior α rhythm. The Journal of Neuroscience, 37(21), 5298–5308.  https://doi.org/10.1523/JNEUROSCI.2899-15.2017.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Takahashi, T., Kansaku, K., Wada, M., Shibuya, S., & Kitazawa, S. (2013). Neural correlates of tactile temporal-order judgment in humans: An fMRI study. Cerebral Cortex, 23(8), 1952–1964.  https://doi.org/10.1093/cercor/bhs179.CrossRefPubMedGoogle Scholar
  25. Tommerdahl, M., Tannan, V., Holden, K. J., & Baranek, T. G. (2008). Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity? Behavioral and Brain Functions, 4, 19.  https://doi.org/10.1186/1744-9081-4-19.CrossRefPubMedGoogle Scholar
  26. Yamamoto, S., & Kitazawa, S. (2001). Reversal of subjective temporal order due to arm crossing. Nature Neuroscience, 4(7), 759.CrossRefGoogle Scholar

Authors and Affiliations

  1. 1.Department of Disabilities of Brain FunctionsResearch Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa/SaitamaJapan
  2. 2.Department of Contemporary PsychologyRikkyo UniversityNiiza/SaitamaJapan
  3. 3.Japan Society for the Promotion of ScienceChiyoda/TokyoJapan
  4. 4.Department of Medical Physiology, Faculty of MedicineKyorin UniversityMitaka/TokyoJapan