Encyclopedia of Autism Spectrum Disorders

Living Edition
| Editors: Fred R. Volkmar

Erythrocyte Glutathione Peroxidase

  • Jonathan KopelEmail author
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6435-8_102075-1



Free radicals remain an integral component of numerous physiological and pathophysiological activities within cellular systems. Free radicals result from electronic excitations leading to the creation of unevenly paired electrons which react with biomolecules in three primary stages: initiation, propagation, and termination. In initiation, free radicals are produced through high-energy radiation, hemolytic cleavage, or the addition of excited electrons. Through propagation, free radicals produce additional free radicals through a process reminiscent of nuclear chain reactions. In the termination step, the propagation of free radicals may be eliminated when free radical species react with one another or are scavenged by antioxidant molecules. In biological systems, reactive oxygen species (ROS), such as •OH and O2•- are the most prominent free radical species produced from environmental exposure or cellular...

This is a preview of subscription content, log in to check access.

References and Reading

  1. Chauhan, A., & Chauhan, V. (2006). Oxidative stress in autism. Pathophysiology, 13(3), 171–181.  https://doi.org/10.1016/j.pathophys.2006.05.007.CrossRefPubMedGoogle Scholar
  2. Devasagayam, T., Tilak, J., Boloor, K., Sane, K. S., Ghaskadbi, S. S., & Lele, R. (2004). Free radicals and antioxidants in human health: Current status and future prospects. The Journal of the Association of Physicians of India, 52, 794–804.PubMedGoogle Scholar
  3. Fantel, A. G., & Person, R. E. (2002). Involvement of mitochondria and other free radical sources in normal and abnormal fetal development. Annals of the New York Academy of Sciences, 959(1), 424–433.  https://doi.org/10.1111/j.1749-6632.2002.tb02112.x.CrossRefPubMedGoogle Scholar
  4. Kondolot, M., Ozmert, E. N., Ascı, A., Erkekoglu, P., Oztop, D. B., Gumus, H., … & Yurdakok, K. (2016). Plasma phthalate and bisphenol a levels and oxidant-antioxidant status in autistic children. Environmental Toxicology and Pharmacology, 43, 149–158.  https://doi.org/10.1016/j.etap.2016.03.006.CrossRefGoogle Scholar
  5. László, A., Novák, Z., Szőllősi-Varga, I., du, Q. H., Vetró, Á., & Kovács, A. (2013). Investigation of antioxidant enzymes in children with autistic disorder. Ideggyógyászati Szemle, 30(66), 23–28.Google Scholar
  6. Parellada, M., Moreno, C., Mac-Dowell, K., Leza, J. C., Giraldez, M., Bailón, C., … & Arango, C. (2012). Plasma antioxidant capacity is reduced in Asperger syndrome. Journal of Psychiatric Research, 46(3), 394–401.  https://doi.org/10.1016/j.jpsychires.2011.10.004.CrossRefGoogle Scholar
  7. Paşca, S. P., Nemeş, B., Vlase, L., Gagyi, C. E., Dronca, E., Miu, A. C., & Dronca, M. (2006). High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sciences, 78(19), 2244–2248.  https://doi.org/10.1016/j.lfs.2005.09.040.CrossRefPubMedGoogle Scholar
  8. Söğüt, S., Zoroğlu, S. S., Özyurt, H., Ramazan Yılmaz, H., Özuğurlu, F., Sivaslı, E., … & Akyol, Ö. (2003). Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clinica Chimica Acta, 331(1–2), 111–117.  https://doi.org/10.1016/s0009-8981(03)00119-0.CrossRefGoogle Scholar
  9. Yorbik, O., Sayal, A., Akay, C., Akbiyik, D. I., & Sohmen, T. (2002). Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins, Leukotrienes and Essential Fatty Acids, 67(5), 341–343.  https://doi.org/10.1054/plef.2002.0439.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Texas Tech University Health Sciences Center (TTUHSC)LubbockUSA