Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Optimization-Based Robust Control

  • Didier HenrionEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4471-5102-9_159-2


This entry describes the basic setup of linear robust control and the difficulties typically encountered when designing optimization algorithms to cope with robust stability and performance specifications.


Linear systems Optimization Robust control 
This is a preview of subscription content, log in to check access.


  1. Ackermann J (1993) Robust control – systems with uncertain physical parameters. Springer, BerlinzbMATHGoogle Scholar
  2. Apkarian P, Noll D (2006) Nonsmooth H-infinity synthesis. IEEE Trans Autom Control 51(1):71–86CrossRefGoogle Scholar
  3. Blondel VD (1994) Simultaneous stabilization of linear systems. Springer, HeidelbergCrossRefGoogle Scholar
  4. Boyd S, El Ghaoui L, Feron E, Balakrishnan V (1994) Linear matrix inequalities in system and control theory. SIAM, PhiladelphiaCrossRefGoogle Scholar
  5. Burke JV, Lewis AS, Overton ML (2001) Optimizing matrix stability. Proc AMS 129:1635–1642MathSciNetCrossRefGoogle Scholar
  6. Burke JV, Henrion D, Lewis AS, Overton ML (2006a) HIFOO – a Matlab package for fixed-order controller design and H-infinity optimization. In: Proceedings of the IFAC symposium robust control design, ToulouseGoogle Scholar
  7. Burke JV, Henrion D, Lewis AS, Overton ML (2006b) Stabilization via nonsmooth, nonconvex optimization. IEEE Trans Autom Control 51(11):1760–1769MathSciNetCrossRefGoogle Scholar
  8. Chesi G (2010) LMI techniques for optimization over polynomials in control: a survey. IEEE Trans Autom Control 55(11):2500–2510MathSciNetCrossRefGoogle Scholar
  9. Gumussoy S, Henrion D, Millstone M, Overton ML (2009) Multiobjective robust control with HIFOO 2.0. In: Proceedings of the IFAC symposium on robust control design (ROCOND 2009), HaifaGoogle Scholar
  10. Henrion D, Lasserre JB (2004) Solving nonconvex optimization problems – how GloptiPoly is applied to problems in robust and nonlinear control. IEEE Control Syst Mag 24(3):72–83CrossRefGoogle Scholar
  11. Scherer CW, Gahinet P, Chilali M (1997) Multi-objective output feedback control via LMI optimization. IEEE Trans Autom Control 42(7):896–911CrossRefGoogle Scholar
  12. Trefethen LN, Embree M (2005) Spectra and pseudospectra: the behavior of nonnormal matrices and operators. Princeton University Press, PrincetonzbMATHGoogle Scholar
  13. Zhou K, Doyle JC, Glover K (1996) Robust and optimal control. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.LAAS-CNRSUniversity of ToulouseToulouseFrance
  2. 2.Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic

Section editors and affiliations

  • Kemin Zhou
    • 1
  1. 1.Department of Electrical and Computer Engineering, Louisiana State UniversityBaton RougeUSA