Encyclopedia of Systems and Control

Living Edition
| Editors: John Baillieul, Tariq Samad

Explicit Model Predictive Control

  • Alberto BemporadEmail author
Living reference work entry

Latest version View entry history

DOI: https://doi.org/10.1007/978-1-4471-5102-9_10-2


Model predictive control (MPC) has been used in the process industries for more than 40 years because of its ability to control multivariable systems in an optimized way under constraints on input and output variables. Traditionally, MPC requires the solution of a quadratic program (QP) online to compute the control action, sometimes restricting its applicability to slow processes. Explicit MPC completely removes the need for online solvers by precomputing the control law off-line, so that online operations reduce to a simple function evaluation. Such a function is piecewise affine in most cases, so that the MPC controller is equivalently expressed as a lookup table of linear gains, a form that is extremely easy to code, requires only basic arithmetic operations, and requires a maximum number of iterations that can be exactly computed a priori.


Constrained control Embedded optimization Model predictive control Multiparametric programming Quadratic programming 
This is a preview of subscription content, log in to check access.


  1. Alessio A, Bemporad A (2009) A survey on explicit model predictive control. In: Magni L, Raimondo DM, Allgower F (eds) Nonlinear model predictive control: towards new challenging applications. Lecture notes in control and information sciences, vol 384. Springer, Berlin/Heidelberg, pp 345–369CrossRefGoogle Scholar
  2. Banjac G, Stellato B, Moehle N, Goulart P, Bemporad A, Boyd S (2017) Embedded code generation using the OSQP solver. IEEE Conference on Decision and Control, Melbourne, pp 1906–1911Google Scholar
  3. Baotić M (2002) An efficient algorithm for multi-parametric quadratic programming. Technical Report AUT02-05, Automatic Control Institute, ETH, ZurichGoogle Scholar
  4. Bemporad A (2003) Hybrid toolbox – user’s guide. http://cse.lab.imtlucca.it/~bemporad/hybrid/toolbox
  5. Bemporad A (2015) A multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squares. IEEE Trans Autom Control 60(11):2892–2903MathSciNetCrossRefGoogle Scholar
  6. Bemporad A (2016) A quadratic programming algorithm based on nonnegative least squares with applications to embedded model predictive control. IEEE Trans Autom Control 61(4):1111–1116CrossRefGoogle Scholar
  7. Bemporad A, Borrelli F, Morari M (2000) Piecewise linear optimal controllers for hybrid systems. In: Proceedings of American Control Conference, Chicago, pp 1190–1194Google Scholar
  8. Bemporad A, Borrelli F, Morari M (2002a) Model predictive control based on linear programming – the explicit solution. IEEE Trans Autom Control 47(12):1974–1985MathSciNetCrossRefGoogle Scholar
  9. Bemporad A, Morari M, Dua V, Pistikopoulos E (2002b) The explicit linear quadratic regulator for constrained systems. Automatica 38(1):3–20MathSciNetCrossRefGoogle Scholar
  10. Bemporad A, Borrelli F, Morari M (2003) Min-max control of constrained uncertain discrete-time linear systems. IEEE Trans Autom Control 48(9):1600–1606MathSciNetCrossRefGoogle Scholar
  11. Bemporad A, Morari M, Ricker N (2014) Model predictive control toolbox for MATLAB – User’s guide. The Mathworks, Inc. http://www.mathworks.com/access/helpdesk/help/toolbox/mpc/ Google Scholar
  12. Borrelli F, Baotić M, Bemporad A, Morari M (2005) Dynamic programming for constrained optimal control of discrete-time linear hybrid systems. Automatica 41(10):1709–1721MathSciNetCrossRefGoogle Scholar
  13. Borrelli F, Bemporad A, Morari M (2017) Predictive control for linear and hybrid systems. Cambridge University Press, Cambridge/New YorkCrossRefGoogle Scholar
  14. Cimini G, Bemporad A (2017) Exact complexity certification of active-set methods for quadratic programming. IEEE Trans Autom Control 62(12):6094–6109MathSciNetCrossRefGoogle Scholar
  15. Fuchs A, Axehill D, Morari M (2015) Lifted evaluation of mp-MIQP solutions. IEEE Trans Autom Control 60(12):3328–3331MathSciNetCrossRefGoogle Scholar
  16. Geyer T, Torrisi F, Morari M (2008) Optimal complexity reduction of polyhedral piecewise affine systems. Automatica 44:1728–1740MathSciNetCrossRefGoogle Scholar
  17. Gupta A, Bhartiya S, Nataraj PSV (2011) A novel approach to multiparametric quadratic programming. Automatica 47(9):2112–2117MathSciNetCrossRefGoogle Scholar
  18. Jones C, Morari M (2006) Multiparametric linear complementarity problems. In: Proceedings of the 45th IEEE Conference on Decision and Control, San Diego, pp 5687–5692Google Scholar
  19. Kvasnica M, Grieder P, Baotić M (2006) Multi parametric toolbox (MPT). http://control.ee.ethz.ch/~mpt/
  20. Mayne D, Rawlings J (2009) Model predictive control: theory and design. Nob Hill Publishing, LCC, MadisonGoogle Scholar
  21. Patrinos P, Bemporad A (2014) An accelerated dual gradient-projection algorithm for embedded linear model predictive control. IEEE Trans Autom Control 59(1):18–33MathSciNetCrossRefGoogle Scholar
  22. Patrinos P, Sarimveis H (2010) A new algorithm for solving convex parametric quadratic programs based on graphical derivatives of solution mappings. Automatica 46(9):1405–1418MathSciNetCrossRefGoogle Scholar
  23. Ricker N (1985) Use of quadratic programming for constrained internal model control. Ind Eng Chem Process Des Dev 24(4):925–936CrossRefGoogle Scholar
  24. Spjøtvold J, Kerrigan E, Jones C, Tøndel P, Johansen TA (2006) On the facet-to-facet property of solutions to convex parametric quadratic programs. Automatica 42(12):2209–2214MathSciNetCrossRefGoogle Scholar
  25. Tøndel P, Johansen TA, Bemporad A (2003a) An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica 39(3):489–497MathSciNetCrossRefGoogle Scholar
  26. Tøndel P, Johansen TA, Bemporad A (2003b) Evaluation of piecewise affine control via binary search tree. Automatica 39(5):945–950MathSciNetCrossRefGoogle Scholar
  27. Wang Y, Boyd S (2010) Fast model predictive control using online optimization. IEEE Trans Control Syst Technol 18(2):267–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.IMT Institute for Advanced Studies LuccaLuccaItaly

Section editors and affiliations

  • James B. Rawlings
    • 1
  1. 1.Dept. of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA