Skip to main content

Dendrochronology

  • Reference work entry
  • First Online:
  • 470 Accesses

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

Tree-ring dating

Definition

The word dendrochronology comprises three parts, originating from Greek “dendron” (tree), “chronos” (time), and -ology (study of), and is defined as “the science of dating tree rings” (Kaennel and Schweingruber, 1995, 65). It is a chronometric (“absolute”) dating technique that employs records of annual growth increments in trees to establish the calendar age of wood samples taken from living or nonliving trees and from wood that has been used by humans.

History

Interest in tree growth and the rings produced by this phenomenon has its origin in fifteenth century AD and possibly before. Leonardo da Vinci is often cited as the first notable scientist not only to write about tree growth but also to speculate that tree rings and environmental parameters (rainfall) in the growing season might be linked (Schweingruber, 1988; Speer, 2010). In the seventeenth century, the invention of the microscope paved the way for wood anatomical studies, and by the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Abrams, M. D., and Nowacki, G. J., 2008. Native Americans as active and passive promoters of mast and fruit trees in the eastern USA. The Holocene, 18(7), 1123–1137.

    Article  Google Scholar 

  • Alestalo, J., 1971. Dendrochronological interpretation of geomorphic processes. Fennia, 105(1), 1–140.

    Google Scholar 

  • Arno, S. F., and Sneck, K. M., 1977. A Method for Determining Fire History in Coniferous Forests of the Mountain West. General Technical Report INT-42. Odgen: Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture.

    Google Scholar 

  • Babiński, L., 2011. Investigations on pre-treatment prior to freeze-drying of archaeological pine wood with abnormal shrinkage anisotropy. Journal of Archaeological Science, 38(7), 1709–1715.

    Article  Google Scholar 

  • Baillie, M. G. L., 1982. Tree-Ring Dating and Archaeology. Chicago: University of Chicago Press.

    Google Scholar 

  • Baillie, M. G. L., 1991. Suck in and smear: two related chronological problems of the 90s. Journal of Theoretical Archaeology, 2, 12–16.

    Google Scholar 

  • Baillie, M. G. L., 1995. A Slice Through Time: Dendrochronology and Precision Dating. London: Batsford.

    Google Scholar 

  • Baillie, M. G. L., 2002. Future of dendrochronology with respect to archaeology. Dendrochronologia, 20(1–2), 69–85.

    Article  Google Scholar 

  • Baillie, M. G. L., and Munro, M. A. R., 1988. Irish tree rings, Santorini and volcanic dust veils. Nature, 332(6162), 344–346.

    Article  Google Scholar 

  • Baillie, M. G. L., and Pilcher, J. R., 1973. A simple cross-dating program for tree-ring research. Tree-Ring Bulletin, 33, 7–14.

    Google Scholar 

  • Becker, B., 1993. An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. Radiocarbon, 35(1), 201–213.

    Article  Google Scholar 

  • Bégin, Y., 2001. Tree-ring dating of extreme lake levels at the subarctic–boreal interface. Quaternary Research, 55(2), 133–139.

    Article  Google Scholar 

  • Bell, M., Allen, J. R. L., Nayling, N., and Buckley, S., 2001. Mesolithic to Neolithic coastal environmental change c. 6500–3500 cal BC. Archaeology of the Severn Estuary, 12, 27–53.

    Google Scholar 

  • Bernabei, M., Bontadi, J., and Rognoni, G. R., 2010. A dendrochronological investigation of stringed instruments from the collection of the Cherubini conservatory in Florence, Italy. Journal of Archaeological Science, 37(1), 192–200.

    Article  Google Scholar 

  • Bill, J., Daly, A., Johnsen, Ø., and Dalend, K. S., 2012. DendroCT – dendrochronology without damage. Dendrochronologia, 30(3), 223–230.

    Article  Google Scholar 

  • Billamboz, A., 1996. Tree rings and pile-dwellings in southern Germany: following in the footsteps of Bruno Huber. In Dean, J. S., Meko, D. M., and Swetnam, T. W. (eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. Tucson: Radiocarbon, Department of Geosciences, University of Arizona, Tucson, pp. 471–483.

    Google Scholar 

  • Billamboz, A., 2008. Dealing with heteroconnections and short tree-ring series at different levels of dating in the dendrochronology of the Southwest German pile-dwellings. Dendrochronologia, 26(3), 145–155.

    Article  Google Scholar 

  • Bollschweiler, M., Stoffel, M., and Schneuwly, D. M., 2008. Dynamics in debris-flow activity on a forested cone – a case study using different dendroecological approaches. Catena, 72(1), 67–78.

    Article  Google Scholar 

  • Bonde, N., and Crumlin-Pedersen, O., 1990. The dating of Wreck 2, the longship, from Skuldelev, Denmark. NewsWARP, 7, 3–6.

    Google Scholar 

  • Bridge, M., 2011. Resource exploitation and wood mobility in northern European oak: Dendroprovenancing of individual timbers from the Mary Rose (1510/11–1545). The International Journal of Nautical Archaeology, 40(2), 417–423.

    Article  Google Scholar 

  • Bridge, M., 2012. Locating the origins of wood resources: a review of dendroprovenancing. Journal of Archaeological Science, 39(8), 2828–2834.

    Article  Google Scholar 

  • Briffa, K. R., 2000. Annual climate variability in the Holocene: interpreting the message of ancient trees. Quaternary Science Reviews, 19(1–5), 87–105.

    Article  Google Scholar 

  • Briffa, K. R., Osborn, T. J., Schweingruber, F. H., Harris, I. C., Jones, P. D., Shiyatov, S. G., and Vaganov, E. A., 2001. Low-frequency temperature variations from a northern tree ring density network. Journal of Geophysical Research, [Atmospheres], 106(D3), 2929–2941.

    Article  Google Scholar 

  • Brown, P. M., 2007. A modified increment borer handle for coring in locations with obstructions. Tree-Ring Research, 63(1), 61–62.

    Article  Google Scholar 

  • Brown, D. M., and Baillie, M. G. L., 2012. Confirming the existence of gaps and depletions in the Irish oak tree-ring record. Dendrochronologia, 30(2), 85–91.

    Article  Google Scholar 

  • Büntgen, U., Tegel, W., Nicolussi, K., McCormick, M., Frank, D., Trouet, V., Kaplan, J. O., Herzig, F., Heussner, K.-U., Wanner, H., Luterbacher, J., and Esper, J., 2011. 2500 years of European climate variability and human susceptibility. Science, 331(6017), 578–582.

    Article  Google Scholar 

  • Campbell, L. J., and Laroque, C. P., 2007. Decay progression and classification in two old-growth forests in Atlantic Canada. Forest Ecology and Management, 238(1–3), 293–301.

    Article  Google Scholar 

  • Carrington, D., 2011. Climategate: hacked climate science emails. The Guardian online. http://www.theguardian.com/environment/2010/jul/07/climate-emails-question-answer

  • Cherubini, P., Humbel, T., Beeckman, H., Gärtner, H., Mannes, D., Pearson, C., Schoch, W., Tognetti, R., and Lev-Yadun, S., 2013. Olive tree-ring problematic dating: a comparative analysis on Santorini (Greece). PLoS ONE, 8(1), e54730. Open access.

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), (2007). Climate change 2007: working group I: the physical science basis. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch6s6-6.html

  • Cook, E. R., and Kairiukstis, L. A. (eds.), 1990. Methods of Dendrochronology: Applications in the Environmental Science. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Crone, A., and Fawcett, R., 1998. Dendrochronology, documents and the timber trade: new evidence for the building history of Stirling Castle, Scotland. Medieval Archaeology, 42, 68–87.

    Article  Google Scholar 

  • Čufar, K., Merela, M., and Erič, M., 2014. A Roman barge in the Ljubljanica river (Slovenia): wood identification, dendrochronological dating and wood preservation research. Journal of Archaeological Science, 44, 128–135.

    Article  Google Scholar 

  • Cutter, B. E., and Guyette, R. P., 1993. Anatomical, chemical, and ecological factors affecting tree species choice in dendrochemistry studies. Journal of Environmental Quality, 22(3), 611–619.

    Article  Google Scholar 

  • D’Arrigo, R. D., and Jacoby, G. C., 1991. A 1000-year record of winter precipitation from northwestern Mexico, USA: a reconstruction from tree-rings and its relation to El Niño and the Southern Oscillation. The Holocene, 1(2), 95–101.

    Article  Google Scholar 

  • D’Arrigo, R. D., Cook, E. R., Jacoby, G. C., and Briffa, K. R., 1993. NAO and sea surface temperature signatures in tree-ring records from the North Atlantic sector. Quaternary Science Reviews, 12(6), 431–440.

    Article  Google Scholar 

  • Daly, A., and Nymoen, P., 2008. The Bøle ship, Skien, Norway – research history, dendrochronology and provenance. The International Journal of Nautical Archaeology, 37(1), 153–170.

    Article  Google Scholar 

  • De Ridder, M., Trouet, V., Van den Bulcke, J., Hubau, W., Van Acker, J., and Beeckman, H., 2013. A tree-ring based comparison of Terminalia superba climate–growth relationships in West and Central Africa. Trees, 27(5), 1225–1238.

    Article  Google Scholar 

  • Dean, J. S., 1993. Geoarchaeological perspectives on the past: chronological considerations. In Stein, J. K., and Linse, A. R. (eds.), Effects of Scale on Archaeological and Geoscientific Perspectives. Boulder: Geological Society of America. Geological Society of America Special Paper 283, pp. 59–65.

    Chapter  Google Scholar 

  • Dick, M., Porter, T. J., Pisaric, M. F. J., Wertheimer, È., deMontigny, P., Perreault, J. T., and Robillard, K.-L., 2014. A multi-century eastern white pine tree-ring chronology developed from salvaged river logs and its utility for dating heritage structures in Canada’s National Capital Region. Dendrochronologia, 32(2), 120–126.

    Article  Google Scholar 

  • Dittmar, C., Eißing, T., and Rothe, A., 2012. Elevation-specific tree-ring chronologies of Norway spruce and silver fir in southern Germany. Dendrochronologia, 30(2), 73–83.

    Article  Google Scholar 

  • Dumayne, L., and Barber, K. E., 1994. The impact of the Romans on the environment of northern England: pollen data from three sites close to Hadrian’s Wall. The Holocene, 4(2), 165–173.

    Article  Google Scholar 

  • Dumayne-Peaty, L., 1998. Human impact on the environment during the Iron Age and Romano-British times: Palynological evidence from three sites near the Antonine Wall, Great Britain. Journal of Archaeological Science, 25(3), 203–214.

    Article  Google Scholar 

  • Durand, S. R., Shelley, P. H., Antweiler, R. C., and Taylor, H. E., 1999. Trees, chemistry, and prehistory in the American Southwest. Journal of Archaeological Science, 26(2), 185–203.

    Article  Google Scholar 

  • Eckstein, D., 1969. Entwicklung und Anwendung der Dendrochronologie zur Alterbestimmung der Siedlung Haithabu. Ph.D. dissertation, Hamburg University, Hamburg.

    Google Scholar 

  • Eckstein, D., and Wrobel, S., 2007. Dendrochronological proof of origin of historic timber – retrospect and perspectives. Proceedings of the symposium on tree rings in archaeology, climatology and ecology, April 20–22, 2006 in Tervuren, Belgium. Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, 74, 8–20.

    Google Scholar 

  • Eckstein, D., Wazny, T., Bauch, J., and Klein, P., 1986. New evidence for the dating of Netherlandish paintings. Nature, 320(6061), 465–466.

    Article  Google Scholar 

  • Eckstein, J., Leuschner, H. H., Giesecke, T., Shumilovskikh, L., and Bauerochse, A., 2010. Dendroecological investigations at Venner Moor (northwest Germany) document climate-driven woodland dynamics and mire development in the period 2450–2050 BC. The Holocene, 20(2), 231–244.

    Article  Google Scholar 

  • English Heritage, 1998. Dendrochronology: Guidelines on Producing and Interpreting Dendrochronological Dates. Peterborough: English Heritage. http://www.english-heritage.org.uk/publications/dendrochronology-guidelines/

  • English Heritage, 2010. Waterlogged Wood: Guidelines on the Recording, Sampling, Conservation and Curation of Waterlogged Wood, 3rd edn. Peterborough: English Heritage. http://www.english-heritage.org.uk/publications/waterlogged-wood/

  • Esper, J., Frank, D., Büntgen, U., Verstege, A., Hantemirov, R. M., and Kirdyanov, A. V., 2009. Trends and uncertainties in Siberian indicators of 20th century warming. Global Change Biology, 16(1), 386–398.

    Article  Google Scholar 

  • Fantucci, R., 2007. Dendrogeomorphological analysis of shore erosion along Bolsena lake (Central Italy). Dendrochronologia, 24(2–3), 69–78.

    Article  Google Scholar 

  • Ferguson, C. W., and Graybill, D. A., 1983. Dendrochronology of bristlecone pine; a progress report. Radiocarbon, 25(2), 287–288.

    Article  Google Scholar 

  • Friedrich, M., Kromer, B., Hofmann, J., and Kaiser, K. F., 1998. Paleo-environment and radiocarbon calibration as derived from lateglacial/early Holocene tree-ring chronologies. Quaternary International, 61(1), 27–39.

    Article  Google Scholar 

  • Friedrich, M., Kromer, B., Spurk, H., Hofmann, J., and Kaiser, K. F., 1999. Paleo-environment and radiocarbon calibration as derived from lateglacial/early Holocene tree-ring chronologies. Quaternary International, 61(1), 27–39.

    Article  Google Scholar 

  • Fritts, H. C., 1976. Tree Rings and Climate. London: Academic.

    Google Scholar 

  • Génova, M., Ballesteros-Cánovas, J. A., Díez-Herrero, A., and Martínez-Callejo, B., 2011. Historical floods and dendrochronological dating of a wooden deck in the Old Mint of Segovia, Spain. Geoarchaeology, 26(5), 786–808.

    Article  Google Scholar 

  • Genries, A., Morin, X., Chauchard, S., and Carcaillet, C., 2009. The function of surface fires in the dynamics and structure of a formerly grazed old subalpine forest. Journal of Ecology, 97(4), 728–741.

    Article  Google Scholar 

  • Grabner, M., Wimmer, R., and Weichenberger, J., 2004. Reconstructing the history of log-drifting in the Reichraminger Hintergebirge, Austria. Dendrochronologia, 21(3), 131–137.

    Article  Google Scholar 

  • Grissino-Mayer, H. D., 2003. A manual and tutorial for the proper use of an increment borer. Tree-Ring Research, 59(2), 63–79.

    Google Scholar 

  • Grissino-Mayer, H. D., (2014). The science of tree rings (formerly, The Ultimate Tree-Ring Web Site); http://web.utk.edu/~grissino/

  • Guyette, R. P., Cutter, B. E., and Henderson, G. S., 1991. Long-term correlations between mining activity and levels of lead and cadmium in tree-rings of eastern red-cedar. Journal of Environmental Quality, 20(1), 146–150.

    Article  Google Scholar 

  • Haglöf, 2014. How to use and take care of the Haglöf increment borer. http://www.haglofcg.com/index.php?option=com_docman&task=doc_view&gid=20&tmpl=component&format=raw&Itemid=100&lang=en

  • Haneca, K., Wazny, T., Van Acker, J., and Beeckman, H., 2005. Provenancing Baltic timber from art historical objects: success and limitations. Journal of Archaeological Science, 32(2), 261–271.

    Article  Google Scholar 

  • Haneca, K., Čufar, K., and Beeckman, H., 2009. Oaks, tree-rings and wooden cultural heritage: a review of the main characteristics and applications of oak dendrochronology in Europe. Journal of Archaeological Science, 36(1), 1–11.

    Article  Google Scholar 

  • Hantemirov, R. M., and Shiyatov, S. G., 2002. A continuous multimillennial ring-width chronology in Yamal, northwestern Siberia. The Holocene, 12(6), 717–726.

    Article  Google Scholar 

  • Hayashida, F. M., 2005. Archaeology, ecological history, and conservation. Annual Review of Anthropology, 34, 43–65.

    Article  Google Scholar 

  • Hillam, J., and Groves, C., 1996. Tree-ring research at Windsor Castle: aims and initial results. In Dean, J. S., Meko, D. M., and Swetnam, T. W. (eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. Tucson: Radiocarbon, Department of Geosciences, University of Arizona, Tucson, pp. 515–523.

    Google Scholar 

  • Hillam, J., Groves, C. M., Brown, D. M., Baillie, M. G. L., Coles, J. M., and Coles, B. J., 1990. Dendrochronology of the English Neolithic. Antiquity, 64(243), 210–220.

    Article  Google Scholar 

  • Hoffsummer, P., 2002. Les charpentes du XIe au XIXe siècle: Typologie et évolution en France du Nord et en Belgique. Paris: Monum, Éditions du Patrimoine.

    Google Scholar 

  • Hogg, A., Lowe, D. J., Palmer, J., Boswijk, G., and Bronk Ramsey, C., 2012. Revised calendar date for the Taupo eruption derived by 14C wiggle-matching using a New Zealand kauri 14C calibration data set. The Holocene, 22(4), 439–449.

    Article  Google Scholar 

  • Holmes, R. L., 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin, 43, 69–78.

    Google Scholar 

  • Jacoby, G. C., Bunker, D. E., and Benson, B. E., 1997. Tree-ring evidence for an A.D. 1700 Cascadia earthquake in Washington and northern Oregon. Geology, 25(11), 999–1002.

    Article  Google Scholar 

  • Jacoby, G. C., Workman, K. W., and D’Arrigo, R. D., 1999. Laki eruption of 1783, tree rings, and disaster for northwest Alaska Inuit. Quaternary Science Reviews, 18(12), 1365–1371.

    Article  Google Scholar 

  • Jansma, E., van Lanen, R. J., Sturgeon, K., Mohlke, S., and Brewer, P. W., 2012. TRiDaBASE: a stand-alone database for storage, analysis and exchange of dendrochronological metadata. Dendrochronologia, 30(3), 209–211.

    Article  Google Scholar 

  • Kaennel, M., and Schweingruber, F. H., 1995. Multilingual Glossary of Dendrochronology: Terms and Definitions in English, German, French, Spanish, Italian, Portuguese and Russian. Berne: Paul Haupt.

    Google Scholar 

  • Kagawa, A., and Leavitt, S. W., 2010. Stable carbon isotopes of tree rings as a tool to pinpoint the geographic origin of timber. Journal of Wood Science, 56(3), 175–183.

    Article  Google Scholar 

  • Kaiser, K. F., Friedrich, M., Miramont, C., Kromer, B., Sgier, M., Schaub, M., Boeren, I., Remmele, S., Talamo, S., Guibal, F., and Sivan, O., 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute – an inventory. Quaternary Science Reviews, 36, 78–90.

    Article  Google Scholar 

  • Kames, S., Tardif, J. C., and Bergeron, Y., 2011. Anomalous earlywood vessel lumen area in black ash (Fraxinus nigra Marsh.) tree rings as a potential indicator of forest fires. Dendrochronologia, 29(2), 109–114.

    Article  Google Scholar 

  • Lageard, J. G. A., and Drew, I. B., 2008. Hydrogeomorphic control on tree growth responses in the Elton area of the Cheshire Saltfield, UK. Geomorphology, 95(3–4), 158–171.

    Article  Google Scholar 

  • Lageard, J. G. A., and Ryan, P. A., 2013. Microscopic fungi as subfossil woodland indicators. The Holocene, 23(7), 990–1001.

    Article  Google Scholar 

  • Lageard, J. G. A., Thomas, P. A., and Chambers, F. M., 2000. Using fire scars and growth release in subfossil Scots pine to reconstruct prehistoric fires. Palaeogeography, Palaeoclimatology, Palaeoecology, 164(1–4), 87–99.

    Article  Google Scholar 

  • Lageard, J. G. A., Howell, J. A., Rothwell, J. J., and Drew, I. B., 2008. The utility of Pinus sylvestris L. in dendrochemical investigations: pollution impact of lead mining and smelting in Darley Dale, Derbyshire, UK. Environmental Pollution, 153(2), 284–294.

    Article  Google Scholar 

  • LaMarche, V. C., Jr., and Hirschboeck, K. K., 1984. Frost rings in trees as records of major volcanic eruptions. Nature, 307(5947), 121–126.

    Article  Google Scholar 

  • Lewis, D., and Smith, D., 2004. Dendrochronological mass balance reconstruction, Strathcona Provincial Park, Vancouver Island, British Columbia, Canada. Arctic, Antarctic, and Alpine Research, 36(4), 598–606.

    Article  Google Scholar 

  • Luckman, B. H., 1988. Dating the moraines and recession of Athabasca and Dome Glaciers, Alberta, Canada. Arctic and Alpine Research, 20(1), 40–54.

    Article  Google Scholar 

  • Mann, M. E., Bradley, R. S., and Hughes, M. K., 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature, 392(6678), 779–787.

    Article  Google Scholar 

  • McCarroll, D., and Loader, N. J., 2004. Stable isotopes in tree rings. Quaternary Science Reviews, 23(7–8), 771–801.

    Article  Google Scholar 

  • McCarroll, D., Pettigrew, E., Luckman, A., Guibal, F., and Edouard, J.-L., 2002. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arctic, Antarctic, and Alpine Research, 34(4), 450–453.

    Article  Google Scholar 

  • Miles, D., 2006. Refinements in the interpretation of tree-ring dates for oak building timbers in England and Wales. Vernacular Architecture, 37(1), 84–96.

    Article  Google Scholar 

  • Mills, C. M., and Crone, A., 2012. Dendrochronological evidence for Scotland’s native timber resources over the last 1000 years. Scottish Forestry, 66(1), 18–33.

    Google Scholar 

  • Müllerová, J., Szabó, P., and Hédl, R., 2014. The rise and fall of traditional forest management in southern Moravia: a history of the past 700 years. Forest Ecology and Management, 331, 104–115.

    Article  Google Scholar 

  • Munaut, A. V., 1966. Recherches dendrochronologiques sur Pinus silvestris: II. Première application des méthodes dendrochronologiques à l’étude de pins sylvestres sub-fossiles (Terneuzen, Pays-Bas). Agricultura, 2e Serie, 14(3), 361–389.

    Google Scholar 

  • Munro, M. A. R., 1983. An improved algorithm for cross-dating tree-ring series. Tree-Ring Bulletin, 44, 17–27.

    Google Scholar 

  • Nash, S. E., 1999. Time, Trees, and Prehistory: Tree-Ring Dating and the Development of North American Archaeology, 1914–1950. Salt Lake City: University of Utah Press.

    Google Scholar 

  • Nayling, N., and Susperregi, J., 2014. Iberian dendrochronology and the Newport medieval ship. International Journal of Nautical Archaeology, 43(2), 279–291.

    Article  Google Scholar 

  • Neuwirth, B., Schweingruber, F. H., and Winiger, M., 2007. Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia, 24(2–3), 79–89.

    Article  Google Scholar 

  • Nicolussi, K., and Patzelt, G., 1996. Reconstructing glacier history in Tyrol by means of tree-ring investigations. Zeitschrift für Gletscherkunde und Glazialgeologie, 32, 207–215.

    Google Scholar 

  • Nicolussi, K., Kaufmann, M., Patzelt, G., van der Plicht, J., and Thurner, A., 2005. Holocene tree-line variability in the Kauner Valley, Central Eastern Alps, indicated by dendrochronological analysis of living trees and subfossil logs. Vegetation History and Archaeobotany, 14(3), 221–234.

    Article  Google Scholar 

  • Okochi, T., Hoshino, Y., Fujii, H., and Mitsutani, T., 2007. Nondestructive tree-ring measurements for Japanese oak and Japanese beech using micro-focus X-ray computed tomography. Dendrochronologia, 24(2–3), 155–164.

    Article  Google Scholar 

  • Patrick, G. J., and Farmer, J. G., 2006. A stable lead isotopic investigation of the use of sycamore tree rings as a historical biomonitor of environmental lead contamination. Science of the Total Environment, 362(1–3), 278–291.

    Article  Google Scholar 

  • Payette, S., and Delwaide, A., 1991. Variations séculaires du niveau d’eau dans le basin de la rivière Boniface (Québec nordique): Une analyse dendroécologique. Géographie Physique et Quaternaire, 45(1), 59–67.

    Article  Google Scholar 

  • Payne, R. J., Edwards, K. J., and Blackford, J. J., 2013. Volcanic impacts on the Holocene vegetation history of Britain and Ireland? A review and meta-analysis of the pollen evidence. Vegetation History and Archaeobotany, 22(2), 153–164.

    Article  Google Scholar 

  • Pelfini, M., Santilli, M., Leonelli, G., and Bozzoni, M., 2007. Investigating surface movements of debris-covered Miage Glacier, Western Italian Alps, using dendroglaciological analysis. Journal of Glaciology, 53(180), 141–152.

    Article  Google Scholar 

  • Pilcher, J. R., Baillie, M. G. L., Schmidt, B., and Becker, B., 1984. A 7272-year tree-ring chronology for western Europe. Nature, 312(5990), 150–152.

    Article  Google Scholar 

  • Pluskowski, A., Boas, A. J., and Gerrard, C., 2011. The ecology of crusading: investigating the environmental impact of the holy war and colonisation at the frontiers of medieval Europe. Medieval Archaeology, 55, 192–225.

    Article  Google Scholar 

  • Regent Instruments, Inc., 2014. WinDENDRO: An Image Analysis System for Tree-Rings Analysis. http://www.regentinstruments.com/assets/windendro_about.html

  • Reynolds, A. C., Betancourt, J. L., Quade, J., Patchett, P. J., Dean, J. S., and Stein, J., 2005. 87Sr/86Sr sourcing of ponderosa pine used in Anasazi great house construction at Chaco Canyon, New Mexico. Journal of Archaeological Science, 32(7), 1061–1075.

    Article  Google Scholar 

  • Richardson, D. M., 2000. Ecology and Biogeography of Pinus. Cambridge: Cambridge University Press.

    Google Scholar 

  • Rinne, K. T., Loader, N. J., Switsur, V. R., and Waterhouse, J. S., 2013. 400-year May-August precipitation reconstruction for Southern England using oxygen isotopes in tree rings. Quaternary Science Reviews, 60, 13–25.

    Article  Google Scholar 

  • Robertson, I., Froyd, C. A., Walsh, R. P. D., Newbery, D. M., Woodborne, S., and Ong, R. C., 2004. The dating of dipterocarp tree rings: establishing a record of carbon cycling and climatic change in the tropics. Journal of Quaternary Science, 19(7), 657–664.

    Article  Google Scholar 

  • Rocky Mountain Tree-Ring Research, (2013). Oldlist – a database of ancient trees. http://www.rmtrr.org/oldlist.htm

  • Saas-Klaassen, U., 2002. Dendroarchaeology: successes in the past and challenges for the future. Dendrochronologia, 20(1–2), 87–93.

    Article  Google Scholar 

  • Sass-Klaassen, U., Vernimmen, T., and Baittinger, C., 2008. Dendrochronological dating and provenancing of timber used as foundation piles under historic buildings in The Netherlands. International Biodeterioration and Biodegradation, 61(1), 96–105.

    Article  Google Scholar 

  • Schöne, B. R., and Schweingruber, F. H., 2001. Dendrochronologische Untersuchungen zur Verwaldung der Alpen am Beispiel eines inneralpinen Trockentals (Ramosch, Unterengadin, Schweiz). Botanica Helvetica, 111(2), 151–168.

    Google Scholar 

  • Schulthess, J., 1990. Der Einfluss von Entwässerung auf die Bewaldung eines Hochmoores: Eine Studie zur rezenten Bewaldungsentwicklung am Etang de la Gruère (JU). Diplomarbeit, Geographisches Institut Universität Zürich.

    Google Scholar 

  • Schweingruber, F. H., 1983. Tree Rings: Basics and Applications of Dendrochronology, 1st edn. Dordrecht: D. Reidel.

    Google Scholar 

  • Schweingruber, F. H., 1988. Tree Rings: Basics and Applications of Dendrochronology. Dordrecht: D. Reidel

    Google Scholar 

  • Schweingruber, F. H., 1996. Tree Rings and Environment Dendroecology. Berne: Paul Haupt.

    Google Scholar 

  • Schweingruber, F. H., Eckstein, D., Serre-Bachet, F., and Bräker, O. U., 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia, 8, 9–38.

    Google Scholar 

  • Scuderi, L. A., 1993. A 2000-year tree-ring record of annual temperatures in the Sierra Nevada mountains. Science, 259(5100), 1433–1436.

    Article  Google Scholar 

  • Sheppard, P. R., (2014). ‘Try skeleton plotting for yourself!’ An interactive Java-language application. Cross dating tree rings using skeleton plotting. http://www.ltrr.arizona.edu/skeletonplot/introcrossdate.htm.

  • Shroder, J. F., Jr., 1978. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah. Quaternary Research, 9(2), 168–185.

    Article  Google Scholar 

  • Shumilov, O. I., Kasatkina, E. A., Lukina, N. V., Kirtsideli, I. Y., and Kanatjev, A. G., 2007. Paleoclimatic potential of the northernmost juniper trees in Europe. Dendrochronologia, 24(2–3), 123–130.

    Article  Google Scholar 

  • Smiley, T. L., 1958. The geology and dating of Sunset Crater, Flagstaff, Arizona. In Anderson, R. Y., and Harshbarger, J. W. (eds.), Guidebook of the Black Mesa Basin, Northeastern Arizona: Ninth Field Conference, October 16, 17, and 18, 1958. Arizona: New Mexico Geological Society, pp. 186–190.

    Google Scholar 

  • Smith, D. J., and Lewis, D., 2007. Dendroglaciology. In Elias, S. A. (ed.), Encyclopedia of Quaternary Science. Amsterdam: Elsevier, Vol. 2, pp. 986–994.

    Google Scholar 

  • Smith, K. T., and Shortle, W. C., 1996. Tree biology and dendrochemistry. In Dean, J. S., Meko, D. M., and Swetnam, T. W. (eds.), Tree Rings, Environment and Humanity: Proceedings of the International Conference, Tucson, Arizona, 17–21 May 1994. Tucson: Radiocarbon, Department of Geosciences, University of Arizona, pp. 629–635.

    Google Scholar 

  • Sorg, A., Bugmann, H., Bollschweiler, M., and Stoffel, M., 2010. Debris-flow activity along a torrent in the Swiss Alps: minimum frequency of events and implications for forest dynamics. Dendrochronologia, 28(4), 215–223.

    Article  Google Scholar 

  • Speer, J. H., 2010. Fundamentals of Tree-Ring Research. Tucson: University of Arizona Press.

    Google Scholar 

  • Stahle, D. W., Cook, E. R., Cleaveland, M. K., Therrell, M. D., Meko, D. M., Grissino-Mayer, H. D., Watson, E., and Luckman, B. H., 2000. Tree ring data document 16th century megadrought over North America. EOS. Transactions of the American Geophysical Union, 81(12), 121–125.

    Article  Google Scholar 

  • Stoffel, M., Schneuwly, D., Bollschweiler, M., Lièvre, I., Delaloye, R., Myint, M., and Monbaron, M., 2005. Analyzing rockfall activity (1600–2002) in a protection forest – a case study using dendrogeomorphology. Geomorphology, 68(3–4), 224–241.

    Article  Google Scholar 

  • Swetnam, T. W., and Baisan, C. H., 1996. Historical fire regime patterns in the southwestern United States since A.D. 1700. In Allen, C. D. (ed.), Fire Effects on Southwestern Forests: Proceedings of the Second La Mesa Fire Symposium. Los Alamos, New Mexico, 29–31 March 1994. USDA Forest Service General Technical Report RM-GTR-286. Fort Collins: US Department of Agriculture Forest Service, Rocky Mountain Forest and Range Experiment Station, pp. 11–32.

    Google Scholar 

  • Swetnam, T. W., Allen, C. D., and Betancourt, J. L., 1999. Applied historical ecology: using the past to manage for the future. Ecological Applications, 9(4), 1189–1206.

    Article  Google Scholar 

  • Thompson, M., 2008. The White War: Life and Death on the Italian Front 1915–1919. London: Faber and Faber.

    Google Scholar 

  • Timberlake, S., and Prag, A. J. N. W. (eds.), 2005. The Archaeology of Alderley Edge: Survey, Excavation and Experiment in an Ancient Mining Landscape. Oxford: J. and E. Hedges. British Archaeological Reports, British Series 396.

    Google Scholar 

  • Turney, C. S. M., Fifield, L. K., Hogg, A. G., Palmer, J. G., Hughen, K., Baillie, M. G. L., Galbraith, R., Ogden, J., Lorrey, A., Tims, S. G., and Jones, R. T., 2010. The potential of New Zealand kauri (Agathis australis) for testing the synchronicity of abrupt climate change during the last glacial interval (60,000–11,700 years ago). Quaternary Science Reviews, 29(27–28), 3677–3682.

    Article  Google Scholar 

  • Tyers, I., 1999. Dendro for Windows Program Guide, 2nd edn. Archaeological Research and Consultancy at the University of Sheffield, ARCUS Report 500.

    Google Scholar 

  • Tyers, I., 2012. Dendrochronological samples of structural timbers. In Arrowsmith, P., and Power, D. (eds.), Roman Nantwich: A Salt-Making Settlement: Excavations at Kingsley Fields 2002. Oxford: Archaeopress. British Archaeological Reports, British Series 557, pp. 150–151.

    Google Scholar 

  • VIAS, Vienna Institute of Archaeological Science, 2005. Video Time Table. Installation and Instruction Manual. Rev. 2.1. Vienna: VIAS

    Google Scholar 

  • Vreugdenhil, S. J., Kramer, K., and Pelsma, T., 2006. Effects of flooding duration, -frequency and -depth on the presence of saplings of six woody species in north-west Europe. Forest Ecology and Management, 236(1), 47–55.

    Article  Google Scholar 

  • Walker, M. J. C., 2005. Quaternary Dating Methods. Chichester: Wiley.

    Google Scholar 

  • Watmough, S. A., 1999. Monitoring historical changes in soil and atmospheric trace metal levels by dendrochemical analysis. Environmental Pollution, 106(3), 391–403.

    Article  Google Scholar 

  • Watmough, S. A., and Hutchinson, T. C., 2002. Historical changes in lead concentrations in tree-rings of sycamore, oak and Scots pine in north-west England. Science of the Total Environment, 293(1V3), 85–96.

    Article  Google Scholar 

  • Wils, T. H. G., Sass-Klaassen, U. G. W., Eshetu, Z., Bräuning, A., Gebrekirstos, A., Couralet, C., Robertson, I., Touchan, R., Koprowski, M., Conway, D., Briffa, K. R., and Beeckman, H., 2011. Dendrochronology in the dry tropics: the Ethiopian case. Trees, 25(3), 345–354.

    Article  Google Scholar 

  • Woodhouse, C. A., Pederson, G. T., and Gray, S. T., 2011. An 1800-yr record of decadal-scale hydroclimatic variability in the upper Arkansas River basin from bristlecone pine. Quaternary Research, 75(3), 483–490.

    Article  Google Scholar 

  • Worbes, M., 2002. One hundred years of tree-ring research in the tropics – a brief history and an outlook to future challenges. Dendrochronologia, 20(1–2), 217–231.

    Article  Google Scholar 

  • Wunder, J., Reineking, B., Hillgarter, F.-W., Bigler, C., and Bugmann, H., 2011. Long-term effects of increment coring on Norway spruce mortality. Canadian Journal of Forest Research, 41(12), 2326–2336.

    Article  Google Scholar 

  • Yadav, R. R., 1992. Dendroindications of recent volcanic eruptions in Kamchatka, Russia. Quaternary Research, 38(2), 260–264.

    Article  Google Scholar 

  • Yamaguchi, D. K., Hoblitt, R. P., and Lawrence, D. B., 1990. A new tree-ring date for the ‘floating island’ lava flow, Mount St. Helens, Washington. Bulletin of Volcanology, 52(7), 545–550.

    Article  Google Scholar 

  • Yanosky, T. M., 1983. Evidence of Floods on the Potomac River from Anatomical Abnormalities in the Wood of Flood-Plain Trees. Washington, DC: US Government Printing Office. US Geological Survey Professional Paper 1296.

    Google Scholar 

  • Zielinski, G. A., and Germani, M. S., 1998. New ice-core evidence challenges the 1620s BC age for the Santorini (Minoan) eruption. Journal of Archaeological Science, 25(3), 279–289.

    Article  Google Scholar 

  • Zielonka, T., Holeksa, J., and Ciapała, S., 2008. A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland. Dendrochronologia, 26(3), 173–183.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan G. A. Lageard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Lageard, J.G.A. (2017). Dendrochronology. In: Gilbert, A.S. (eds) Encyclopedia of Geoarchaeology. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4409-0_41

Download citation

Publish with us

Policies and ethics