Advertisement

Graphics Recognition Techniques

  • Josep Lladós
  • Marçal Rusiñol
Reference work entry

Abstract

This chapter describes the most relevant approaches for the analysis of graphical documents. The graphics recognition pipeline can be splitted into three tasks. The low level or lexical task extracts the basic units composing the document. The syntactic level is focused on the structure, i.e., how graphical entities are constructed, and involves the location and classification of the symbols present in the document. The third level is a functional or semantic level, i.e., it models what the graphical symbols do and what they mean in the context where they appear. This chapter covers the lexical level, while the next two chapters are devoted to the syntactic and semantic level, respectively. The main problems reviewed in this chapter are raster-to-vector conversion (vectorization algorithms) and the separation of text and graphics components. The research and industrial communities have provided standard methods achieving reasonable performance levels. Hence, graphics recognition techniques can be considered to be in a mature state from a scientific point of view. Additionally this chapter provides insights on some related problems, namely, the extraction and recognition of dimensions in engineering drawings, and the recognition of hatched and tiled patterns. Both problems are usually associated, even integrated, in the vectorization process.

Keywords

Dimension recognition Graphics recognition Graphic-rich documents Polygonal approximation Raster-to-vector conversion Texture-based primitive extraction Text-graphics separation 

References

  1. 1.
    Abd-Almageed W, Kumar J, Doermann D (2009) Page ruleline removal using linear subspaces in monochromatic handwritten arabic documents. In: Proceedings of the 12th international conference on document analysis and recognition, Barcelona, pp 768–772Google Scholar
  2. 2.
    Acharyya M, Kundu MK (2002) Document image segmentation using wavelet scale-space features. IEEE Trans Circuits Syst Video Technol 12(12):1117–1127CrossRefGoogle Scholar
  3. 3.
    Antoine D, Collin S, Tombre K (1992) Analysis of technical documents: the REDRAW system. In: Structured document image analysis. Springer, Berlin, pp 385–402CrossRefGoogle Scholar
  4. 4.
    Boatto L, Consorti V, Del Buono M, Di Zenzo S, Eramo V, Esposito A, Melcarne F, Meucci M, Morelli A, Mosciatti M, Scarci S, Tucci M (1992) An interpretation system for land register maps. Computer 25(7):25–33CrossRefGoogle Scholar
  5. 5.
    Cao R, Tan CL (2002) Text/graphics separation in maps. In: Graphics recognition algorithms and applications. Lecture notes in computer science, vol 2390. Springer, Berlin/New York, pp 167–177Google Scholar
  6. 6.
    Chen J, Lopresti D, Kavallieratou E (2010) The impact of ruling lines on writer identification. In: Proceedings of the 2nd international conference on frontiers in handwriting recognition, Kolkata, pp 439–444Google Scholar
  7. 7.
    Chen Y, Langrana NA, Das AK (1996) Perfecting vectorized mechanical drawings. Comput Vis Image Underst 63(2):273–286CrossRefGoogle Scholar
  8. 8.
    Chhabra AK, Misra V, Arias J (1996) Detection of horizontal lines in noisy run length encoded images: the FAST method. In: Graphics recognition methods and applications. Lecture notes in computer science, vol 1072. Springer, Berlin/Heidelberg, pp 35–48CrossRefGoogle Scholar
  9. 9.
    Chiu SH, Liaw JJ (2005) An effective voting method for circle detection. Pattern Recognit Lett 26(2):121–133CrossRefGoogle Scholar
  10. 10.
    Dalitz C, Droettboom M, Pranzas B, Fujinaga I (2008) A comparative study of staff removal algorithms. IEEE Trans Pattern Anal Mach Intell 30:753–766CrossRefGoogle Scholar
  11. 11.
    Das AK, Langrana NA (1997) Recognition and integration of dimension sets in vectorized engineering drawings. Comput Vis Image Underst 68(1):90–108CrossRefGoogle Scholar
  12. 12.
    Davies ER (1988) A modified Hough scheme for general circle location. Pattern Recognit Lett 7(1):37–43CrossRefGoogle Scholar
  13. 13.
    Di Zenzo S, Cinque L, Levialdi S (1996) Run-based algorithms for binary image analysis and processing. IEEE Trans Pattern Anal Mach Intell 18(1):83–89CrossRefGoogle Scholar
  14. 14.
    Doermann D (1998) An introduction to vectorization and segmentation. In: Graphics recognition algorithms and systems. Lecture notes in computer science, vol 1389. Springer, Berlin/New York, pp 1–8Google Scholar
  15. 15.
    Dori D (1992) Self-structural syntax-directed pattern recognition of dimensioning components in engineering drawings. In: Structured document image analysis. Springer, Berlin/New York, pp 359–384CrossRefGoogle Scholar
  16. 16.
    Dori D (1997) Orthogonal zig-zag: an algorithm for vectorizing engineering drawings compared with Hough transform. Adv Eng Softw 28(1):11–24CrossRefGoogle Scholar
  17. 17.
    Dori D, Liu W (1996) Vector-based segmentation of text connected to graphics in engineering drawings. In: Advances in structural and syntactical pattern recognition. Lecture notes in computer science, vol 1121. Springer, Berlin/New York, pp 322–331CrossRefGoogle Scholar
  18. 18.
    Dori D, Liu W (1999) Automated CAD conversion with the machine drawing understanding system: concepts, algorithms, and performance. IEEE Trans Syst Man Cybern Part A: Syst Hum 29(4):411–416CrossRefGoogle Scholar
  19. 19.
    Dori D, Pnuelli A (1988) The grammar of dimensions in machine drawings. Comput Vis Image Underst 42(1):1–18Google Scholar
  20. 20.
    Dori D, Velkovitch Y (1998) Segmentation and recognition of dimensioning text from engineering drawings. Comput Vis Image Underst 69(2):196–201CrossRefGoogle Scholar
  21. 21.
    Dori D, Wenyin L (1998) Stepwise recovery of arc segmentation in complex line environments. Int J Doc Anal Recognit 1(1):62–71Google Scholar
  22. 22.
    Dori D, Wenyin L (1999) Sparse pixel vectorization, an algorithm and its performance evaluation. IEEE Trans Pattern Anal Mach Intell 21(3):202–215CrossRefGoogle Scholar
  23. 23.
    Dosch P, Tombre K, Ah-Soon C, Masini G (2000) A complete system for the analysis of architectural drawings. Int J Doc Anal Recognit 3(2):102–116CrossRefGoogle Scholar
  24. 24.
    Fan KC, Chen DF, Wen MG (1998) Skeletonization of binary images with nonuniform width via block decomposition and contour vector matching. Pattern Recognit 31(7):823–838CrossRefGoogle Scholar
  25. 25.
    Fletcher LA, Kasturi R (1988) A robust algorithm for text string separation from mixed text/graphics images. IEEE Trans Pattern Anal Mach Intell 10(6):910–918CrossRefGoogle Scholar
  26. 26.
    Fukada Y (1984) A primary algorithm for the understanding of logic circuit diagrams. Pattern Recognit 17(1):125–134CrossRefGoogle Scholar
  27. 27.
    Han CC, Fan KC (1994) Skeleton generation of engineering drawings via contour matching. Pattern Recognit 27(2):261–275CrossRefGoogle Scholar
  28. 28.
    Hilaire X, Tombre K (2006) Robust and accurate vectorization of line drawings. IEEE Trans Pattern Anal Mach Intell 28(6):890–904CrossRefGoogle Scholar
  29. 29.
    Hoang TV, Tabbone S (2010) Text extraction from graphical document images using sparse representation. In: Proceedings of the 9th IAPR international workshop on document analysis systems, Boston, pp 143–150Google Scholar
  30. 30.
    Hori O, Tanigawa S (1993) Raster-to-vector conversion by line fitting based on contours and skeletons. In: Proceedings of the 2nd international conference on document analysis and recognition, Tsukuba, pp 353–358Google Scholar
  31. 31.
    Jain A, Bhattacharjee S (1992) Text segmentation using gabor filters for automatic document processing. Mach Vis Appl 5(3):169–184CrossRefGoogle Scholar
  32. 32.
    Janssen RDT, Vossepoel AM (1997) Adaptive vectorization of line drawing images. Comput Vis Image Underst 65(1):38–56CrossRefGoogle Scholar
  33. 33.
    Jonk A, van den Boomgaard R, Smeulders A (1999) Grammatical inference of dashed lines. Comput Vis Image Underst 74(3):212–226CrossRefGoogle Scholar
  34. 34.
    Journet N, Eglin V, Ramel JY, Mullot R (2005) Text/graphic labelling of ancient printed documents. In: Proceedings of the 8th international conference on document analysis and recognition, Seoul, pp 1010–1014Google Scholar
  35. 35.
    Kaneko T (1992) Line structure extraction from line-drawing images. Pattern Recognit 25(9):963–973CrossRefGoogle Scholar
  36. 36.
    Kasturi R, Bow ST, El-Masri W, Shah J, Gattiker JR, Mokate UB (1990) A system for interpretation of line drawings. IEEE Trans Pattern Anal Mach Intell 12(10):978–992CrossRefGoogle Scholar
  37. 37.
    Kawamura K, Watanabe H, Tominaga H (2004) Vector representation of binary images containing halftone dots. In: Proceedings of the IEEE international conference on multimedia and expo, Taipei, pp 335–338Google Scholar
  38. 38.
    Kolesnikov AN, Belekhov VV, Chalenko IO (1996) Vectorization of raster images. Pattern Recognit Image Anal 6(4):786–794Google Scholar
  39. 39.
    Lai CP, Kasturi R (1994) Detection of dimension sets in engineering drawings. IEEE Trans Pattern Anal Mach Intell 16(8):848–854CrossRefGoogle Scholar
  40. 40.
    Lam L, Lee SW, Suen CY (1992) Thinning methodologies – a comprehensive survey. IEEE Trans Pattern Anal Mach Intell 14(9):869–885CrossRefGoogle Scholar
  41. 41.
    Lamiroy B, Guebbas Y (2010) Robust and precise circular arc detection. In: Graphics recognition. Achievements, challenges and evolution. Lecture notes in computer science, vol 6020. Springer, Berlin/Heidelberg, pp 49–60CrossRefGoogle Scholar
  42. 42.
    Lee KH, Cho SB, Choy YC (2000) Automated vectorization of cartographic maps by a knowledge-based system. Eng Appl Artif Intell 13(2):165–178CrossRefGoogle Scholar
  43. 43.
    Lin SC, Ting CK (1997) A new approach for detection of dimensions set in mechanical drawings. Pattern Recognit Lett 18(4):367–373CrossRefGoogle Scholar
  44. 44.
    Lin X, Shimotsuji S, Minoh M, Sakai T (1985) Efficient diagram understanding with characteristic pattern detection. Comput Vis Image Underst 30(1):84–106Google Scholar
  45. 45.
    Loo PK, Tan CL (2001) Detection of word groups based on irregular pyramid. In: Proceedings of the 6th international conference on document analysis and recognition, Seattle, pp 200–204Google Scholar
  46. 46.
    Lu Z (1998) Detection of text regions from digital engineering drawings. IEEE Trans Pattern Anal Mach Intell 20(4):431–439CrossRefGoogle Scholar
  47. 47.
    Luo H, Kasturi R (1998) Improved directional morphological operations for separation of characters from maps/graphics. In: Graphics recognition algorithms and systems. Lecture notes in computer science, vol 1389. Springer, Berlin/New York, pp 35–47CrossRefGoogle Scholar
  48. 48.
    Matsuyama T, Saburi K, Nagao M (1982) A structural analyzer for regularly arranged textures. Comput Graph Image Process 18:259–278CrossRefGoogle Scholar
  49. 49.
    Min W, Tang Z, Tang L (1993) Using web grammar to recognize dimensions in engineering drawings. Pattern Recognit 26(9):1407–1416CrossRefGoogle Scholar
  50. 50.
    Monagan G, Roosli M (1993) Appropriate base representation using a run graph. In: Proceedings of the 2nd international conference on document analysis and recognition, Tsukuba, pp 623–626Google Scholar
  51. 51.
    Niblack CW, Gibbons PB, Capson DW (1992) Generating skeletons and centerlines from the distance transform. CVGIP: Graph Models Image Process 54(5):420–437Google Scholar
  52. 52.
    Olson CF (1999) Constrained Hough transforms for curve detection. Comput Vis Image Underst 73(3):329–345zbMATHCrossRefGoogle Scholar
  53. 53.
    Rosin PL (2003) Assessing the behaviour of polygonal approximation algorithms. Pattern Recognit 36(2):505–518CrossRefGoogle Scholar
  54. 54.
    Rosin PL, West GA (1989) Segmentation of edges into lines and arcs. Image Vis Comput 7(2):109–114CrossRefGoogle Scholar
  55. 55.
    Roy PP, Pal U, Lladós J (2012) Text line extraction in graphical documents using background and foreground information. Int J Doc Anal Recognit 15(3):227–241CrossRefGoogle Scholar
  56. 56.
    Sánchez G, Lladós J (2004) Syntactic models to represent perceptually regular repetitive patterns in graphic documents. In: Graphics recognition. Recent advances and perspectives. Lecture notes in computer science, vol 3088. Springer, Berlin/New York, pp 166–175CrossRefGoogle Scholar
  57. 57.
    Saund E, Mahoney J, Fleet D, Larner D (2002) Perceptual organization as a foundation for graphics recognition. In: Graphics recognition: algorithms and applications. Springer, Berlin/New York, pp 139–147Google Scholar
  58. 58.
    Shafait F, Keysers D, Breuel TM (2008) GREC 2007 arc segmentation contest: evaluation of four participating algorithms. In: Graphics recognition. Recent advances and new opportunities. Lecture notes in computer science, vol 5046. Springer, Berlin/New York, pp 310–320Google Scholar
  59. 59.
    Shih CC, Kasturi R (1989) Extraction of graphic primitives from images of paper based line drawings. Mach Vis Appl 2(2):103–113CrossRefGoogle Scholar
  60. 60.
    Shimotsuji S, Hori O, Asano M, Suzuki K, Hoshino F, Ishii T (1992) A robust recognition system for a drawing superimposed on a map. Computer 25(7):56–59CrossRefGoogle Scholar
  61. 61.
    Song J, Lyu MR (2005) A Hough transform based line recognition method utilizing both parameter space and image space. Pattern Recognit 38(4):539–552CrossRefGoogle Scholar
  62. 62.
    Song J, Su F, Tai CL, Cai S (2002) An object-oriented progressive-simplification-based vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans Pattern Anal Mach Intell 24:1048–1060CrossRefGoogle Scholar
  63. 63.
    Song J, Lyu MR, Cai S (2004) Effective multiresolution arc segmentation: algorithms and performance evaluation. IEEE Trans Pattern Anal Mach Intell 26(11):1491–1506CrossRefGoogle Scholar
  64. 64.
    Tan CL, Ng PO (1998) Text extraction using pyramid. Pattern Recognit 31(1):63–72CrossRefGoogle Scholar
  65. 65.
    Tombre K (1998) Analysis of engineering drawings: state of the art and challenges. In: Graphics recognition algorithms and systems. Lecture notes in computer science, vol 1389. Springer, Berlin/New York, pp 257–264CrossRefGoogle Scholar
  66. 66.
    Tombre K, Tabbone S (2000) Vectorization in graphics recognition: to thin or not to thin. In: Proceedings of the 15th international conference on pattern recognition, Barcelona, pp 91–96Google Scholar
  67. 67.
    Tombre K, Ah-Soon C, Dosch P, Massini G, Tabbone S (2000) Stable and robust vectorization: how to make the right choices. In: Graphics recognition recent advances. Lecture notes in computer science, vol 1941. Springer, Berlin/New York, pp 3–18CrossRefGoogle Scholar
  68. 68.
    Tombre K, Tabbone S, Pelissier L, Lamiroy B, Dosch P (2002) Text/graphics separation revisited. In: Document analysis systems V. Lecture notes in computer science, vol 2423. Springer, Berlin/New York, pp 615–620Google Scholar
  69. 69.
    Vaxivière P, Tombre K (1994) Subsampling: a structural approach to technical document vectorization. In: Structure and pattern recognition. Proceedings of the IAPR Workshop on syntactic and structural pattern recognition, Haifa, Israel, pp 323–332Google Scholar
  70. 70.
    Wahl F, Wong K, Casey R (1982) Block segmentation and text extraction in mixed text/image documents. Comput Graph Image Process 20(4):375–390CrossRefGoogle Scholar
  71. 71.
    Wendling L, Tabbone S (2004) A new way to detect arrows in line drawings. IEEE Trans Pattern Anal Mach Intell 26(7):935–941CrossRefGoogle Scholar
  72. 72.
    Wenyin L, Dori D (1996) Sparse pixel tracking: a fast vectorization algorithm applied to engineering drawings. In: Proceedings of the 13th international conference on pattern recognition, Vienna, pp 808–812Google Scholar
  73. 73.
    Wenyin L, Dori D (1998) A survey of non-thinning based vectorization methods. In: Advances in pattern recognition. Lecture notes in computer science, vol 1451. Springer, Berlin/New York, pp 230–241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2014

Authors and Affiliations

  • Josep Lladós
    • 1
  • Marçal Rusiñol
    • 2
  1. 1.Computer Vision Center & Computer Science DepartmentUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Computer Vision Center & Computer Science DepartmentUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations