Metabolism and Enzymology of Cholesterol and Steroids

  • B. Stoffel-Wagner
Reference work entry


This chapter summarizes the current knowledge on the metabolism of steroids in the human brain, the enzymes mediating these reactions, their localization, and the putative effects of steroids in the brain. The presence of the steroidogenic enzymes cytochrome P450SCC, aromatase, 5α-reductase, 3α-hydroxysteroid dehydrogenase, 17β-hydroxysteroid dehydrogenase, and steroid sulfatase in human brain has now been firmly established by molecular biological and biochemical studies. Their presence in the cerebral cortex and in the subcortical white matter indicates that various cell types, either neurons or glial cells, are involved in the biosynthesis of neuroactive steroids in the brain. The following functions are attributed to specific neuroactive steroids: modulation of GABAA, N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection, and induction of neurite outgrowth, dendritic spines, and synaptogenesis. The first clinical investigation in humans produced evidence for an involvement of neuroactive steroids in conditions such as depressive disorders, catamenial epilepsy, fatigue during pregnancy, premenstrual syndrome, and postpartum depression. Further and improved knowledge of the biochemical pathways of steroidogenesis and the actions of neuroactive steroids on the brain may enable new perspectives in the understanding of the physiology of the human brain as well as in the pharmacological treatment of its disturbances.


Subcortical White Matter Aromatase Activity Neuroactive Steroid CYP11A1 mRNA Steroidogenic Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:


3β-hydroxysteroid dehydrogenase




dehydroepiandrosterone sulfate


γ-aminobutyric acid A




organic anion transporter polypeptide-A


organic anion transporter polypeptides


17β-hydroxysteroid dehydrogenase


steroid sulfatase


hydroxysteroid sulfotransferase


3α-hydroxysteroid dehydrogenase


  1. Ackerman GE, Smith ME, Mendelson CR, MacDonald PC, Simpson ER. 1981. Aromatization of androstenedione by human adipose tissue stromal cells in monolayer culture. J Clin Endocrinol Metab 53: 412–417.PubMedCrossRefGoogle Scholar
  2. Andersson S, Berman DM, Jenkins EP, Russell DW. 1991. Deletion of steroid 5-reductase 2 gene in male pseudohermaphroditism. Nature 354: 159–161.PubMedCrossRefGoogle Scholar
  3. Andersson S, Russell DW. 1990. Structural and biochemical properties of cloned and expressed human and rat steroid 5-reductases. Proc Natl Acad Sci USA 87: 3640–3644.PubMedCrossRefGoogle Scholar
  4. Baulieu EE. 1997. Neurosteroids: Of the nervous system, by the nervous system, for the nervous system. Recent Prog Horm Res 52: 1–33.PubMedGoogle Scholar
  5. Baulieu EE. 1998. Neurosteroids: A novel function of the brain. Psychoneuroendocrinology 23: 963–987.PubMedCrossRefGoogle Scholar
  6. Baulieu EE, Robel P. 1990. Neurosteroids: A new brain function? J Steroid Biochem Mol Biol 37: 395–403.PubMedCrossRefGoogle Scholar
  7. Baulieu EE, Robel P. 1996. Dehydroepiandrosterone and dehydroepiandrosterone sulfate as neuroactive neurosteroids. J Endocrinol 150: S221–S239.PubMedGoogle Scholar
  8. Backstrom T. 1975. Epilepsy in women. Oestrogen and progesterone plasma levels. Experientia 32: 248–249.CrossRefGoogle Scholar
  9. Backstrom T. 1976. Epileptic seizures in women related to plasma estrogen and progesterone during the menstrual cycle. Acta Neurol Scand 54: 321–347.PubMedCrossRefGoogle Scholar
  10. Belelli D, Lan NC, Gee KW. 1990. Anticonvulsant steroids and the GABA/benzodiazepine receptor-chloride ionophore complex. Neurosci Biobehav Rev 14: 315–322.PubMedCrossRefGoogle Scholar
  11. Beyenburg S, Stoffel-Wagner B, Watzka M, Blumcke I, Bauer J, et al. 1999. Expression of cytochrome P450scc mRNA in the hippocampus of patients with temporal lobe epilepsy. Neuroreport 10: 3067–3070.PubMedCrossRefGoogle Scholar
  12. Beyenburg S, Watzka M, Clusmann H, Blumcke I, Bidlingmaier F, et al. 2001. Messenger RNA of steroid 21-hydroxylase (CYP21) is expressed in the human hippocampus. Neurosci Lett 308: 111–114.PubMedCrossRefGoogle Scholar
  13. Biedermann K, Schoch P. 1995. Do neuroactive steroids cause fatigue in pregnancy? Eur J Obstet Gynecol Reprod Biol 58: 15–18.PubMedCrossRefGoogle Scholar
  14. Celotti F, Melcangi RC, Negri-Cesi P, Ballabio M, Martini L. 1986. A comparative study of the metabolism of testosterone in the neuroendocrine structures of several animal species. Neuro Endocrinol Lett 5: 227–236.Google Scholar
  15. Chung BC, Matteson KJ, Voutilainen R, Mohandas TK, Miller WL. 1986. Human cholesterol side-chain cleavage enzyme, P450SCC: CDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta. Proc Natl Acad Sci USA 83: 8962–8966.PubMedCrossRefGoogle Scholar
  16. Compagnone NA, Bufone A, Rubenstein JLR. 1995. Steroidogenic enzyme P450c17 is expressed in the embryonic central nervous system. Endocrinology 136: 5212–5223.PubMedCrossRefGoogle Scholar
  17. Compagnone NA, Mellon SH. 1998. Dehydroepiandrosterone: A potential signalling molecule for neocortical organization during development. Proc Natl Acad Sci USA 95: 4678–4683.PubMedCrossRefGoogle Scholar
  18. Corbin JC, Graham-Lorence S, McPhaul MJ, Mason JI, Mendelson CR, et al. 1988. Isolation of a full-length cDNA insert encoding human aromatase system cytochrome P-450 and its expression in non-steroidogenic cells. Proc Natl Acad Sci USA 85: 8948–8953.PubMedCrossRefGoogle Scholar
  19. Doody KJ, Carr BR. 1989. Aromatase in human fetal tissues. Am J Obstet Gynecol 161: 1694–1697.PubMedGoogle Scholar
  20. Dupont E, Simard J, Luu-The V, Labrie F, Pelletier G. 1994. Localization of 3beta-hydroxysteroid dehydrogenase in rat brain as studied by in situ hybridization. Mol Cell Neurosci 5: 119–123.PubMedCrossRefGoogle Scholar
  21. Erdmann B, Gerst H, Lippoldt A, Bulow H, Ganten D, et al. 1996. Expression of cytochrome P45011B1 mRNA in the brain of normal and hypertensive transgenic rats. Brain Res 733: 73–82.PubMedCrossRefGoogle Scholar
  22. Gao B, Hagenbuch B, Kullak-Ublick GA, Benke D, Aguzzi A, et al. 2000. Organic anion-transporting polypeptides mediate transport of opioid peptides across blood-brain barrier. J Pharmacol Exp Ther 294: 73–79.PubMedGoogle Scholar
  23. Garcia-Estrada J, Luquin S, Fernandez AM, Garcia-Segura LM. 1999. Dehydroepiandrosterone, pregnenolone and sex steroids down-regulate reactive astroglia in the male rat brain after a penetrating brain injury. Int J Dev Neurosci 17: 145–151.PubMedCrossRefGoogle Scholar
  24. Gomez-Sanchez CE, Zhou MY, Cozza EN. 1997. Aldosterone biosynthesis in the rat brain. Endocrinology 138: 3369–3373.PubMedCrossRefGoogle Scholar
  25. Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Eddleman FC, et al. 1996. Corticoid synthesis in the central nervous system. Endocr Res 22: 463–470.PubMedGoogle Scholar
  26. Goodyer IM, Herbert J, Altham PM, Pearson J, Secher SM, et al. 1996. Adrenal secretion during major depression in 8- to 16-year olds. I. Altered diurnal rhythms in salivary cortisol and dehydroepiandrosterone (DHEA) at presentation. Psychol Med 26: 245–256.PubMedCrossRefGoogle Scholar
  27. Grazzini E, Guillon G, Mouillac B, Zingg HH. 1998. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 392: 509–512.PubMedCrossRefGoogle Scholar
  28. Guennoun R, Fiddes RJ, Gouezou M, Lombes M, Baulieu MM. 1995. A key enzyme in the biosynthesis of neurosteroids, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD), is expressed in rat brain. Mol Brain Res 30: 287–300.PubMedCrossRefGoogle Scholar
  29. Hagenbuch B, Gao B, Meier PJ. 2002. Transport of xenobiotics across the blood-brain barrier. News Physiol Sci 17: 231–234.PubMedGoogle Scholar
  30. Harada N. 1988. Cloning of a comparative cDNA encoding human aromatase: Immunochemical identification and sequence analysis. Biochem Biophys Res Commun 156: 725–732.PubMedCrossRefGoogle Scholar
  31. Henderson D, Norbisrath G, Kerb U. 1986. 1-Methyl-1,4-androstadiene-3,17-dione (SH 489): Characterization of an irreversible inhibitor of estrogen biosynthesis. J Steroid Biochem 24: 303–306.PubMedCrossRefGoogle Scholar
  32. Herbert J. 1998. Neurosteroids, brain damage, and mental illness. Exp Gerontol 33: 713–727.PubMedCrossRefGoogle Scholar
  33. Hillen T, Lun A, Reischies FM, Borchelt M, Steinhagen-Thiessen E, et al. 2000. DHEA-S plasma levels and incidence of Alzheimer’s disease. Biol Psychiatry 47: 161–163.PubMedCrossRefGoogle Scholar
  34. Hu ZY, Bourreau E, Jung-Testas I, Robel P, Baulieu EE. 1987. Neurosteroids: Oligodendrocyte mitochondria convert cholesterol to pregnenolone. Proc Natl Acad Sci USA 84: 8215–8219.PubMedCrossRefGoogle Scholar
  35. Huppert FA, van Niererk JK, Herbert J. 2000. Dehydroepiandrosterone (DHEA) supplementation for cognition and well-being. Cochrane Database Syst Rev 2: CD000304.Google Scholar
  36. Iwahashi K, Kawai Y, Suwaki H, Hosokawa K, Ishikawa Y. 1993. A localization study of the cytochrome P-450(21)-linked monooxygenase system in adult rat brain. J Steroid Biochem Mol Biol 44: 163–169.PubMedCrossRefGoogle Scholar
  37. Jaffe RB. 1969. Testosterone metabolism in target tissues: Hypothalamic and pituitary tissues of the adult rat and human fetus, and the immature rat epiphysis. Steroids 14: 483–498.PubMedCrossRefGoogle Scholar
  38. Jenkins JS, Hall CJ. 1977. Metabolism of [14C]testosterone by human foetal and adult brain tissue. J Endocrinol 74: 425–429.PubMedCrossRefGoogle Scholar
  39. Keeney DS, Ikeda Y, Waterman MR, Parker KL. 1995. Cholesterol side-chain cleavage cytochrome P450 gene expression in the primitive gut of the mouse embryo does not require steroidogenic factor 1. Mol Endocrinol 9: 1091–1098.PubMedCrossRefGoogle Scholar
  40. Kerrigan JF, Shields WD, Nelson TY, Bluestone DL, Dodson WE, et al. 2000. Ganaxolone for treating refractory infantile spasms: A multicenter, open-label, add-on trial. Epilepsy Res: 42133–139.CrossRefGoogle Scholar
  41. Khanna M, Qin KN, Cheng KC. 1995a. Distribution of 3alpha-hydroxysteroid dehydrogenase in rat brain and molecular cloning of multiple cDNAs encoding structurally related proteins in humans. J Steroid Biochem Mol Biol 53: 41–46.PubMedCrossRefGoogle Scholar
  42. Khanna M, Qin KN, Wang RW, Cheng KC. 1995b. Substrate specificity, gene structure, and tissue-specific distribution of multiple human 3α-hydroxisteroid dehydrogenases. J Biol Chem 270: 20162–20168.PubMedCrossRefGoogle Scholar
  43. Kimonides VG, Khatibi NH, Svendsen CN, Sofroniew MV, Herbert J. 1998 Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity. Proc Natl Acad Sci USA 95: 1852–1857.PubMedCrossRefGoogle Scholar
  44. Kohchi C, Ukena K, Tsutsui K. 1998. Age- and region-specific expressions of the messenger RNAs encoding for steroidogenic enzymes p450SCC, p450c17 and 3beta-HSD in the postnatal rat brain. Brain Res 801: 233–238.PubMedCrossRefGoogle Scholar
  45. Kokate TG, Svensson BE, Rogawski MA. 1994. Anticonvulsant activity of neurosteroids: Correlation with γ-aminobutyric acid-evoked chloride current potentiation. J Pharmacol Exp Ther 270: 1223–1229.PubMedGoogle Scholar
  46. Krazeisen A, Breitling R, Imai K, Fritz S, Moller G, et al. 1999. Determination of cDNA, gene structure and chromosomal localization of the novel 17β-hyxdroxisteroid dehydrogenase type 7. FEBS Lett 460: 373–379.PubMedCrossRefGoogle Scholar
  47. Kullak-Ublick GA, Fisch T, Oswald M, Hagenbuch B, Meier PJ, et al. 1998. Dehydroepiandrosterone sulfate (DHEAS): Identification of a carrier protein in human liver and brain. FEBS Lett 424: 173–176.PubMedCrossRefGoogle Scholar
  48. Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, et al. 1998. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: Its role during aging. Steroids 63: 322–328.PubMedCrossRefGoogle Scholar
  49. Labrie F, Luu-The V, Lin SX, Simard J, Breton A, et al. 1997. A key role of 17β-hydroxisteroid dehydrogenases in sex steroid biology. Steroids 62: 148–158.PubMedCrossRefGoogle Scholar
  50. Labrie F, Luu-The V, Lin SX, Simard J, Labrie C, et al. 2000. Intracrinology: Role of the family of 17b-hydroxysteroid dehydrogenases in human physiology and disease. J Mol Endocrinol 25: 1–16.PubMedCrossRefGoogle Scholar
  51. Lambert JJ, Belelli D, Hill-Venning C, Peters JA. 1995. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci 16: 295–303.PubMedCrossRefGoogle Scholar
  52. Lephart ED. 1993. Brain 5-reductase: Cellular, enzymatic, and molecular perspectives and implications for biological function. Mol Cell Neurosci 4: 473–484.PubMedCrossRefGoogle Scholar
  53. Li X, Bertics PJ, Karavolas HJ. 1997. Regional distribution of cytosolic and particulate 5α-dihydroprogesterone 3α-hydroxysteroid oxidoreductases in female rat brain. J Steroid Biochem Mol Biol 60: 311–318.PubMedCrossRefGoogle Scholar
  54. Magri F, Terenzi F, Ricciardi T, Fioravantio M, Solerte SB, et al. 2000. Association between changes in adrenal secretion and cerebral morphometric correlates in normal aging and senile dementia. Dement Geriatr Cogn Disord 11: 90–99.PubMedCrossRefGoogle Scholar
  55. Majewska MD. 1992. Neurosteroids: Endogenous bimodal modulators of the GABAA receptor. Mechanism of action and physiological significance. Prog Neurobiol 38: 379–395.PubMedCrossRefGoogle Scholar
  56. Majewska MD. 1995. Neuronal actions of dehydroepiandrosterone. Possible roles in brain development, aging, memory, and affect. Ann N Y Acad Sci 774: 111–120.PubMedCrossRefGoogle Scholar
  57. Martel C, Melner MH, Gagne D, Simard J, Labrie F. 1994. Widespread tissue distribution of steroid sulfatase, 3β-hydroxisteroid dehydrogenase/Δ5 – Δ4 isomerase (3β-HSD), 17β-HSD, 5α-reductase and aromatase activities in the rhesus monkey. Mol Cell Endocrinol 104: 103–111.PubMedCrossRefGoogle Scholar
  58. Martini L. 1982. The 5-reduction of testosterone in the neuroendocrine structures. Biochemical and physiological implications. Endocr Rev 3: 1–25.PubMedCrossRefGoogle Scholar
  59. Martini L, Melcangi RC. 1991. Androgen metabolism in the brain. J Steroid Biochem Mol Biol 39: 819–828.PubMedCrossRefGoogle Scholar
  60. Massa R, Justo S, Martini L. 1975. Conversion of testosterone into 5-reduced metabolites in the anterior pituitary and in the brain of maturing rats. J Steroid Biochem 19: 235–239.Google Scholar
  61. Mellon S. 1994. Neurosteroids: Biochemistry, modes of action, and clinical relevance. J Clin Endocrinol Metab 78: 1003–1008.PubMedCrossRefGoogle Scholar
  62. Mellon S, Deschepper CF. 1993. Neurosteroid biosynthesis: Genes for adrenal steroidogenic enzymes are expressed in the brain. Brain Res 629: 283–292.PubMedCrossRefGoogle Scholar
  63. Mellon S, Miller WL. 1989. Extraadrenal steroid 21-hydroxylation is not mediated by P450c21. J Clin Invest 84: 1497–1502.PubMedCrossRefGoogle Scholar
  64. Mensah-Nyagan A, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, et al. 1999. Neurosteroids: Expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 51: 63–81.PubMedGoogle Scholar
  65. Mickan H. 1972. Metabolism of 4-14C-progesterone and 4-14-C-testosterone in brain of the previable human fetus. Steroids 19: 659–668.PubMedCrossRefGoogle Scholar
  66. Milewich L, Carr BR, Frenkel RA. 1990. 17β-Hydroxysteroid oxidoreductases of human fetal and adult tissues: Immunological cross-reactivity with an anti-human placental cytosolic 17β-hydroxysteroid oxidoreductase antibody. Placenta 11: 95–108.PubMedCrossRefGoogle Scholar
  67. Monaghan EP, Harris S, Blum D, Morrell M, Beydoun A, et al. 1997a. Ganaxolone in the treatment of complex partial seizures: A double-blind presurgical design. Epilepsia 38 (Suppl 8): S179.Google Scholar
  68. Monaghan EP, Navalta LA, Shum L, Ashbrook DW, Lee DA. 1997b. Initial human experience with ganaxolone, a neuroactive steroid with antiepileptic activity. Epilepsia 38: 1026–1031.PubMedCrossRefGoogle Scholar
  69. Monnet FP, Mahe V, Robel P, Baulieu EE. 1995. Neurosteroids, via σ receptors modulate the [3H]norepinephrine release evoked by N-methyl-D-aspartate in the rat hippocampus. Proc Natl Acad Sci USA 92: 3774–3778.PubMedCrossRefGoogle Scholar
  70. Naftolin F. 1994. Brain aromatization of androgens. J Reprod Med 39: 257–261.PubMedGoogle Scholar
  71. Naftolin F, Ryan KJ, Davies IJ, Reddy VV, Flores F, et al. 1975. The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res 31: 295–319.PubMedGoogle Scholar
  72. Naftolin F, Ryan KJ, Petro Z. 1971a. Aromatization of androstenedione by the diencephalon. J Clin Endocrinol Metab 33: 368–370.PubMedCrossRefGoogle Scholar
  73. Naftolin F, Ryan KJ, Petro Z. 1971b. Aromatization of androstenedione by limbic system tissue from human foetuses. J Endocrinol 51: 795–796.PubMedCrossRefGoogle Scholar
  74. Nasman B, Olsson B, Backstrom T, Eriksson S, Grankvist K, et al. 1991. Serum dehydroepiandrosterone sulfate in Alzheimer’s disease and in multiinfarct dementia. Biol Psychiatry 30: 684–690.PubMedCrossRefGoogle Scholar
  75. Normington K, Russell DW. 1992. Tissue distribution and kinetic characteristics of rat steroid 5-reductase isozymes. J Biol Chem 267: 19548–19554.PubMedGoogle Scholar
  76. Orchinik M, Murray TF, Franklin PH, Moore FL. 1992. Guanyl nucleotides modulate binding to steroid receptors in neuronal membranes. Proc Natl Acad Sci USA 89: 3830–3834.PubMedCrossRefGoogle Scholar
  77. Orentreich N, Brind JL, Vogelman JH, Andres R, Baldwin H. 1992. Long-term longitudinal measurements of plasma dehydroepiandrosterone sulfate in normal men. J Clin Endocrinol Metab 75: 1002–1004.PubMedCrossRefGoogle Scholar
  78. Paul SM, Purdy RH. 1992. Neuroactive steroids. FASEB J 6: 2311–2322.PubMedGoogle Scholar
  79. Penning TM. 1997. Molecular endocrinology of hydroxisteroid dehydrogenases. Endocr Rev 18: 281–305.PubMedCrossRefGoogle Scholar
  80. Penning TM, Burczynski ME, Jez JM, Hung CF, Lin HK, et al. 2000. Human 3α-hydroxisteroid dehydrogenase isoforms (AKR1C1-AKR1C4) of the aldo-keto reductase superfamily: Functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem J 351: 67–77.PubMedCrossRefGoogle Scholar
  81. Peltoketo H, Luu-The V, Simard J. 1999. 17β-Hydroxisteroid dehydrogenase (HSD)/17-ketosteroid reductase (KSR) family; nomenclature and main characteristics of the 17HSD/KSR enzymes. J Mol Endocrinol 23: 1–11.PubMedCrossRefGoogle Scholar
  82. Poletti A, Negri-Cesi P, Rabuffetti M, Colciago A, Celotti F, et al. 1998 Transient expression of the 5α-reductase type 2 isozyme in the rat brain in the late fetal and early postnatal life. Endocrinology 139: 2171–2178.PubMedCrossRefGoogle Scholar
  83. Prince RJ, Simmonds MA. 1992. Steroid modulation of the strychnine-sensitive glycine receptor. Neuropharmacology 31: 201–205.PubMedCrossRefGoogle Scholar
  84. Resko JA, Connolly PB, Roselli C. 1988. Testosterone 5-reductase activity in neural tissue of fetal rhesus macaques. J Steroid Biochem 29: 429–434.PubMedCrossRefGoogle Scholar
  85. Qin KN, New MI, Cheng KC. 1993. Molecular cloning of multiple cDNAs encoding human enzymes structurally related to 3α-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 52: 141–147.Google Scholar
  86. Reddy DS. 2004. Role of neurosteroids in catamenial epilepsy. Epilepsy Res 62: 99–118.PubMedCrossRefGoogle Scholar
  87. Richards CD, Hesketh TR. 1975. Implications for theories of anaesthesia of antagonism between anaesthetic and non-anaesthetic steroids. Nature 256: 179–182.PubMedCrossRefGoogle Scholar
  88. Robel P, Schumacher M, Baulieu EE. 1999. Neurosteroids: From definition and biochemistry to physiopathologic function. Neurosteroids. A New Regulatory Function in the Nervous System. Baulieu EE, Robel P, Schumacher M, editors. Totowa, New Jersey: Humana Press; pp. 1–25.Google Scholar
  89. Romeo E, Brancati A, De Lorenzo A, Fucci P, Furnari C, et al. 1996. Marked decrease of plasma neuroactive steroids during alcohol withdrawal. Clin Neuropharmacol 19: 366–369.PubMedCrossRefGoogle Scholar
  90. Rowlands MG, Davies JH, Shearer RJ, Dowsett M. 1991. Comparison of aromatase activity in human prostatic, testicular and placental tissues. J Enzyme Inhib 4: 307–313.PubMedCrossRefGoogle Scholar
  91. Rupprecht R. 1997. The neuropsychopharmacological potential of neuroactive steroids. J Psychiatry Res 31: 297–314.CrossRefGoogle Scholar
  92. Rupprecht R, Holsboer F. 1999. Neuroactive steroids: Mechanism of action and neuropsychopharmacological perspectives. Trends Neurosci 22: 410–416.PubMedCrossRefGoogle Scholar
  93. Saitoh H, Hirato K, Yanaihara T, Yanaihara T, Nakayama T. 1982. A study of 5-reductase in human fetal brain. Endocrinol Jpn 29: 461–467.PubMedCrossRefGoogle Scholar
  94. Sanne JL, Krueger KE. 1995. Expression of cytochrome P450 side-chain cleavage enzyme and 3beta-hydroxysteroid dehydrogenase in the rat central nervous system: A study by polymerase chain reaction and in situ hybridization. J Neurochem 65: 528–36.PubMedCrossRefGoogle Scholar
  95. Schindler AE. 1976. Steroid metabolism in foetal tissues - IV conversion of testosterone to 5-dihydrotestosterone in human foetal brain. J Steroid Biochem 7: 97–100.PubMedCrossRefGoogle Scholar
  96. Selmanoff MK, Brodkin LD, Weiner RI, Siiteri PK. 1977. Aromatization and 5-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat. Endocrinology 101: 841–848.PubMedCrossRefGoogle Scholar
  97. Selye H. 1941. The anesthetic effect of steroid hormones. Proc Soc Exp Biol Med 46: 116–121.Google Scholar
  98. Shapiro LJ. 1985. Steroid sulfatase deficiency and the genetics of the short arm of the human X chromosome. Adv Hum Genet 14: 388–339.Google Scholar
  99. Shields WD, Kerrigan JF, Bluestone DL, et al. 1997. Ganaxolone in the treatment of refractory infantile spasms. Ann Neurol 42: 503–504.Google Scholar
  100. Simpson ER, MacDonald PC. 1981. Endocrine physiology of the placenta. Annu Rev Physiol 43: 163–188.PubMedCrossRefGoogle Scholar
  101. Steckelbroeck S, Heidrich DD, Stoffel-Wagner B, Hans VH, Schramm J, et al. 1999a Characterization of aromatase cytochrome P450 activity in the human temporal lobe. J Clin Endocrinol Metab 84: 2795–2801.PubMedCrossRefGoogle Scholar
  102. Steckelbroeck S, Nassen A, Ugele B, Ludwig M, Watzka M, et al. 2004. Steroid sulfatase (STS) expression in the human temporal lobe: Enzyme activity, mRNA expression and immunohistochemistry study. J Neurochem 89: 403–417.PubMedCrossRefGoogle Scholar
  103. Steckelbroeck S, Stoffel-Wagner B, Reichelt R, Schramm J, Bildingmaier F, et al. 1999b. Characterization of 17β-hydroxysteroid dehydrogenase activity in brain tissue: Testosterone formation in the human temporal lobe. J Neuroendocrinol 11: 457–464.PubMedCrossRefGoogle Scholar
  104. Steckelbroeck S, Watzka M, Lutjohann D, Makiola P, Nassen A, et al. 2002. Characterization of the dehydroepiandrosterone (DHEA) metabolism via oxysterol 7°-hydroxylase and 17-ketosteroid reductase activity in the human brain. J Neurochem 83: 713–726.PubMedCrossRefGoogle Scholar
  105. Steckelbroeck S, Watzka M, Reichelt R, Hans VH, Stoffel-Wagner B, et al. 2001a. Characterization of the 5α-reductase-3α-hydroxysteroid dehydrogenase complex in the human brain. J Clin Endocrinol Metab 86: 1324–1331.PubMedCrossRefGoogle Scholar
  106. Steckelbroeck S, Watzka M, Stoffel-Wagner B, Hans VH, Redel L, et al. 2001b. Expression of 17β-hydroxysteroid dehydrogenase type 5 mRNA in the human brain. Mol Cell Endocrinol 171: 165–168.PubMedCrossRefGoogle Scholar
  107. Stein C, Hille A, Seidel J, Rijnbout S, Waheed A, et al. 1989. Cloning and expression of human steroid-sulfatase. Membrane topology, glycosylation, and subcellular distribution in BHK-21 cells. J Biol Chem 264: 13865–13872.PubMedGoogle Scholar
  108. Stoffel-Wagner B, Beyenburg S, Watzka M, Blumcke I, Bauer J, et al. 2000. Expression of 5-reductase and 3-hydroxisteroid oxidoreductase in the hippocampus of patients with chronic temporal lobe epilepsy. Epilepsia 41: 140–147.PubMedCrossRefGoogle Scholar
  109. Stoffel-Wagner B, Watzka M, Schramm J, Bidlingmaier F, Klingmuller D. 1999a. Expression of CYP19 (aromatase) mRNA in different areas of the human brain. J Steroid Biochem Mol Biol 70: 237–241.PubMedCrossRefGoogle Scholar
  110. Stoffel-Wagner B, Watzka M, Steckelbroeck S, Schramm J, Bidlingmaier F, et al. 1999b. D. Expression of 17β-hydroxysteroid dehydrogenase types 1, 2, 3 and 4 in the human temporal lobe. J Endocrinol 160: 119–126.PubMedCrossRefGoogle Scholar
  111. Stoffel-Wagner B, Watzka M, Steckelbroeck S, Schwaab R, Schramm J, et al. 1998a. Expression of CYP19 (aromatase) mRNA in the human temporal lobe. Biochem Biophys Res Commun 244: 768–771.PubMedCrossRefGoogle Scholar
  112. Stoffel-Wagner B, Watzka M, Steckelbroeck S, Wickert L, Schramm J, et al. 1998b. Expression of 5α-reductase in the human temporal lobe of children and adults. J Clin Endocrinol Metab 83: 3636–3642.PubMedCrossRefGoogle Scholar
  113. Strohle A, Romeo E, Hermann B, Pasini A, Spaletta G, et al. 1999. Concentrations of 3alpha-reduced neuroactive steroids and their precursors in plasma of patients with major depression and after clinical recovery. Biol Psych 45: 274–277.CrossRefGoogle Scholar
  114. Stromstedt M, Waterman MR. 1995. Messenger mRNAs encoding steroidogenic enzymes are expressed in rodent brain. Brain Res Mol Brain Res 34: 75–88.PubMedCrossRefGoogle Scholar
  115. Tamai I, Nezu J, Uchino H, Sai Y, Oku A, et al. 2000. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun 273: 251–260.PubMedCrossRefGoogle Scholar
  116. Thigpen AE, Silver RI, Guileyardo JM, Casey ML, McConnell JD, et al. 1993. Tissue distribution and ontogeny of steroid 5-reductase isoenzyme expression. J Clin Invest 92: 903–910.PubMedCrossRefGoogle Scholar
  117. Wang M, Seippel L, Purdy RH, Backstrom T. 1996. Relationship between symptom severity and steroid variation in women with premenstrual syndrome: Study on serum pregnenolone, pregnenolone sulfate, 5 alpha-pregnane-3,20-dione and 3 alpha-hydroxy-5 alpha-pregnan-20-one. J Clin Endocrinol Metab 81: 1076–1082.PubMedCrossRefGoogle Scholar
  118. Warner M, Gustafsson JA. 1995. Cytochrome P450 in the brain: Neuroendocrine functions. Front Neuroendocrinol 16: 224–236.PubMedCrossRefGoogle Scholar
  119. Watzka M, Bidlingmaier F, Schramm J, Klimngmuller D, Stoffel-Wagner B. 1999. Sex- and age-specific differences in human brain CYP11A1 mRNA expression. J Neuroendocrinol 11: 901–905.PubMedCrossRefGoogle Scholar
  120. Weill-Engerer S, David JP, Sazdovitch V, Liere P, Schumacher M, et al. 2003. In vitro metabolism of dehydroepiandrosterone (DHEA) to 7alpha-hydroxy-DHEA and Δ5-androstene-3β,17β-diol in specific regions of the aging brain from Alzheimer’s and non-demented patients. Brain Res 969: 117–125.PubMedCrossRefGoogle Scholar
  121. Wolf OT, Neumann O, Hellhammer DH, Geiben AC, Strasburger CJ, et al. 1997. Effects of a two-week physiological dehydroepiandrosterone substitution on cognitive performance and well-being in healthy elderly women and men. J Clin Endocrinol Metab 82: 2363–2367.PubMedCrossRefGoogle Scholar
  122. Wolf OT, Naumann E, Hellhammer DH, Kirschbaum C. 1998. Effects of dehydroepiandrosterone replacement in elderly men on event-related potentials, memory and well-being. J Gerontol A Biol Sci Med Sci 53: M385–M390.PubMedCrossRefGoogle Scholar
  123. Wozniak A, Hutchison RE, Morris CM, Hutchison JB. 1998. Neuroblastoma and Alzheimer’s disease brain cells contain aromatase activity. Steroids 63: 263–267.PubMedCrossRefGoogle Scholar
  124. Wu FS, Gibbs TT, Farb DH. 1991. Pregnenolone sulfate: A positive allosteric modulator at the N-methyl-D-aspartate receptor. Mol Pharmacol 40: 333–336.PubMedGoogle Scholar
  125. Yen PH, Allen E, Marsh B, Mohandas T, Wang N, et al. 1987. Cloning and expression of steroid sulfatase cDNA and the frequent occurrence of deletions in STS deficiency: Implications for X-Y interchange. Cell 49: 443–454.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • B. Stoffel-Wagner

There are no affiliations available

Personalised recommendations