Skip to main content

Choline and Ethanolamine Glycerophospholipids

  • Reference work entry
Handbook of Neurochemistry and Molecular Neurobiology

Abstract:

Choline and ethanolamine glycerophospholipids are amphipathic molecules that are asymmetrically distributed in the bilayer. They provide the neural membranes with a suitable environment, fluidity, and ion permeability. The degree of saturation and the length of glycerophospholipid-acyl chains are important determinants of neural membrane properties. Choline and ethanolamine glycerophospholipids are synthesized at the endoplasmic reticulum and are transported to other membranous structures by phospholipid exchange and transfer proteins. Glycerophospholipids undergo base-exchange, methylation, and decarboxylation reactions for interconversion. These reactions and activities of phospholipases A2, C, and D are involved in the turnover, compositional maintenance, and rearrangements of glycerophospholipids in membranes. Glycerophospholipids are a storage depot for precursors for second messengers, and may be involved in membrane fusion, apoptosis, and regulation of the activities of membrane-bound enzymes and ion-channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

arachidonic acid

cAMP:

cyclic adenosine monophosphate

CDP:

cytidinediphospho

CTP:

cytidine triphosphate

DAG:

1,2-sn-diacylglycerols

DHA:

docosahexaenoic acid

ER:

endoplasmic reticulum

FFA:

free fatty acids

NFκB:

nuclear transcription factor κD

NPDR:

neuroprotectin D receptor

PAF:

platelet-activating factor

PKC:

protein kinase C

PtdCho:

phosphatidylcholine

PtdEtn:

phosphatidylethanolamine

PtdH:

phosphatidic acid

PLA:

phospholipase A

PLC:

phospholipase C

PLD:

phospholipase D

RER1:

resolvin E receptor

ResoDR1:

resolvin D receptor

ResoER1:

resolvin E receptor

TNF-α:

tumor necrosis factor-α

References

  • Atsumi G, Tajima M, Hadano A, Nakatani Y, Murakami M, et al. 1998. Fas-induced arachidonic acid release is mediated by Ca2+ -independent phospholipase A2 but not cytosolic phospholipase A2 which undergoes proteolytic inactivation. J Biol Chem 273: 13870–13877.

    PubMed  CAS  Google Scholar 

  • Attucci S, Albani-Torregrossa S, Moroni F, Pellegrini-Giampietro DE. 2001. Metabotropic glutamate receptors stimulate phospholipase D via different pathways in the adult and neonate rat hippocampus. Neurochem Res 26: 1151–1155.

    PubMed  CAS  Google Scholar 

  • Axelrad TW, Deo DD, Ottino P, Van Kirk J, Bazan NG, et al. 2004. Platelet-activating factor (PAF) induces activation of matrix metalloproteinase 2 activity and vascular endothelial cell invasion and migration. FASEB J 18: 470–492.

    Google Scholar 

  • Banchio C, Schang LM, Vance DE. 2004. Phosphorylation of Sp1 by cyclin-dependent kinase 2 modulates the role of Sp1 in CTP: Phosphocholine cytidylyltransferase alpha regulation during the S phase of the cell cycle. J Biol Chem 279: 40220–40226.

    PubMed  CAS  Google Scholar 

  • Banno Y. 2002. Regulation and possible role of mammalian phospholipase D in cellular functions. J Biochem (Tokyo) 131: 301–306.

    CAS  Google Scholar 

  • Bayón Y, Hernández M, Alonso A, Nunez L, Garcia-Sancho J, et al. 1997. Cytosolic phospholipase A2 is coupled to muscarinic receptors in the human astrocytoma cell line 1321N1: Characterization of the transducing mechanism. Biochem J 323: 281–287.

    PubMed  Google Scholar 

  • Bazan NG. 2003. Synaptic lipid signaling: Significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 44: 2221–2233.

    PubMed  CAS  Google Scholar 

  • Bazan NG. 2005. Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol Neurobiol 32: 89–103.

    PubMed  CAS  Google Scholar 

  • Birner R, Daum G. 2003. Biogenesis and cellular dynamics of aminoglycerophospholipids. International Review of Cytology - A Survey of Cell Biology, Vol. 225. Jeon KW, editor. San Diego: Academic Press Inc; pp. 273–323.

    Google Scholar 

  • Bleijerveld OB, Klein W, Vaandrager AB, Helms JB, Houweling M. 2004. Control of the CDPethanolamine pathway in mammalian cells: Effect of CTP: Phosphoethanolamine cytidylyltransferase overexpression and the amount of intracellular diacylglycerol. Biochem J 379: 711–719.

    PubMed  CAS  Google Scholar 

  • Carman GM, Kersting MC. 2004. Phospholipid synthesis in yeast: Regulation by phosphorylation. Biochem Cell Biol 82: 62–70.

    PubMed  CAS  Google Scholar 

  • Carter JM, Waite KA, Campenot RB, Vance JE, Vance DE. 2003. Enhanced expression and activation of CTP: Phosphocholine cytidylyltransferase β2 during neurite outgrowth. J Biol Chem 278: 44988–44994.

    PubMed  CAS  Google Scholar 

  • Chauhan V, Sheikh AM, Chauhan A, Spivack WD, Fenko MD, et al. 2005. Regulation of high molecular weight bovine brain neutral protease by phospholipids in vitro. Mol Cell Biochem 272: 145–149.

    PubMed  CAS  Google Scholar 

  • Clement JM, Kent C. 1999. CTP: Phosphocholine cytidylyltransferase: Insights into regulatory mechanisms and novel functions. Biochem Biophys Res Commun 257: 643–650.

    PubMed  CAS  Google Scholar 

  • Cook HW, Ridgway ND, Byers DM. 1998. Involvement of phospholipase D and protein kinase C in phorbol ester and fatty acid stimulated turnover of phosphatidylcholine and phosphatidylethanolamine in neural cells. Biochim Biophys Acta Lipids Lipid Metab 1390: 103–117.

    CAS  Google Scholar 

  • Cui Z, Houweling M. 2002. Phosphatidylcholine and cell death. Biochim Biophys Acta Mol Cell Biol Lipids 1585: 87–96.

    CAS  Google Scholar 

  • DeLong CJ, Shen YJ, Thomas MJ, Cui Z. 1999. Molecular distinction of phosphatidylcholine synthesis between the CDP–choline pathway and phosphatidylethanolamine methylation pathway. J Biol Chem 274: 29683–29688.

    PubMed  CAS  Google Scholar 

  • Di Marzo V, Galadari SHI, Tippins JR, Morris HR. 1991. Interactions between second messengers: Cyclic AMP and phospholipase A2- and phospholipase C-metabolites. Life Sci 49: 247–259.

    PubMed  CAS  Google Scholar 

  • Emoto K, Toyama-Sorimachi N, Karasuyama H, Inoue K, Umeda M. 1997. Exposure of phosphatidylethanolamine on the surface of apoptotic cells. Exp Cell Res 232: 430–434.

    PubMed  CAS  Google Scholar 

  • Engelmann B, Bräutigam C, Thiery J. 1994. Plasmalogen phospholipids as potential protectors against lipid peroxidation of low density lipoproteins. Biochem Biophys Res Commun 204: 1235–1242.

    PubMed  CAS  Google Scholar 

  • Exton JH. 1997. New developments in phospholipase D. J Biol Chem 272: 15579–15582.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Antony P, Ong WY, Horrocks LA, Freysz L. 2004a. Retinoic acid-mediated phospholipase A2 signaling in the nucleus. Brain Res Rev 45: 179–195.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA. 2001. Plasmalogens: Workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7: 232–245.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA. 2004a. Brain phospholipases A2: A perspective on the history. Prostaglandins Leukot Essent Fatty Acids 71: 161–169.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA. 2004b. Plasmalogens, platelet activating factor, and other ether lipids. Bioactive Lipids. Nicolaou A, Kokotos G, editors. Bridgwater, England: Oily Press; pp. 107–134.

    Google Scholar 

  • Farooqui AA, Horrocks LA. 2005. Signaling and interplay mediated by phospholipases A2, C, and D in LA-N-1 cell nuclei. Reprod Nutr Dev 45: 613–631.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA. 2006. Phospholipase A2-generated lipid mediators in brain: The good, the bad, and the ugly. Neuroscientist 12: 245-260.

    Google Scholar 

  • Farooqui AA, Farooqui T, Horrocks LA. 2002. Molecular species of phospholipids during brain development. Their occurrence, separation and roles. In Brain Lipids and Disorders in Biological Psychiatry. Skinner ER, editor. Amsterdam: Elsevier Science B.V.; pp. 147–158.

    Google Scholar 

  • Farooqui AA, Hirashima Y, Horrocks LA. 1992. Brain phospholipases and their role in signal transduction. Adv Exp Med Biol 318: 11–25.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T. 2000a. Deacylation and reacylation of neural membrane glycerophospholipids. J Mol Neurosci 14: 123–135.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Horrocks LA, Farooqui T. 2000b. Glycerophospholipids in brain: Their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem Phys Lipids 106: 1–29.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA. 2004b. Biochemical aspects of neurodegeneration in human brain: Involvement of neural membrane phospholipids and phospholipases A2. Neurochem Res 29: 1961–1977.

    PubMed  CAS  Google Scholar 

  • Farooqui AA, Ong WY, Horrocks LA. 2006. Inhibitors of brain phospholipase A2 activity: Their neuropharmacologic effects and therapeutic importance for the treatment of neurologic disorders. Pharmacol Rev 58: 591-620.

    Google Scholar 

  • Farooqui AA, Pendley CE II, Taylor WA, Horrocks LA. 1985. Studies on diacylglycerol lipases and lysophospholipases of bovine brain. Phospholipids in the Nervous System, Vol. II. Horrocks LA, Kanfer JN, Porcellati G, editors. Physiological Role. New York: Raven Press; pp. 179–192.

    Google Scholar 

  • Farooqui AA, Yang HC, Rosenberger TA, Horrocks LA. 1997. Phospholipase A2 and its role in brain tissue. J Neurochem 69: 889–901.

    PubMed  CAS  Google Scholar 

  • Feng L, Mills GB, Prestwich GD. 2003. Modulators of lysophosphatidic acid signaling. Expert Opin Therapeut Pat 13: 1619–1634.

    Google Scholar 

  • Forrester JS, Milne SB, Ivanova PT, Brown HA. 2004. Computational lipidomics: A multiplexed analysis of dynamic changes in membrane lipid composition during signal transduction. Mol Pharmacol 65: 813–821.

    PubMed  CAS  Google Scholar 

  • Fuentes L, Hernández M, Nieto ML, Sánchez Crespo M. 2002. Biological effects of group IIA secreted phospholipase A2. FEBS Lett 531: 7–11.

    PubMed  CAS  Google Scholar 

  • Fukami K. 2002. Structure, regulation, and function of phospholipase C isozymes. J Biochem (Tokyo) 131: 293–299.

    CAS  Google Scholar 

  • Golfman LS, Bakovic M, Vance DE. 2001. Transcription of the CTP: Phosphocholine cytidylyltransferase alpha gene is enhanced during the S phase of the cell cycle. J Biol Chem 276: 43688–43692.

    PubMed  CAS  Google Scholar 

  • Hashimotodani Y, Ohno-Shosaku T, Tsubokawa H, Ogata H, Emoto K, et al. 2005. Phospholipase C β serves as a coincidence detector through its Ca2+ dependency for triggering retrograde endocannabinoid signal. Neuron 45: 257–268.

    PubMed  CAS  Google Scholar 

  • Hengst U, Albrecht H, Hess D, Monard D. 2001. The phosphatidylethanolamine-binding protein is the prototype of a novel family of serine protease inhibitors. J Biol Chem 276: 535–540.

    PubMed  CAS  Google Scholar 

  • Henneberry AL, McMaster CR. 1999. Cloning and expression of a human choline/ethanolaminephosphotransferase: Synthesis of phosphatidylcholine and phosphatidylethanolamine. Biochem J 339: 291–298.

    PubMed  CAS  Google Scholar 

  • Hirashima Y, Farooqui AA, Mills JS, Horrocks LA. 1992. Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J Neurochem 59: 708–714.

    PubMed  CAS  Google Scholar 

  • Honda Z, Ishii S, Shimizu T. 2002. Platelet-activating factor receptor. J Biochem (Tokyo) 131: 773–779.

    CAS  Google Scholar 

  • Horrocks LA, Farooqui AA. 2004. Docosahexaenoic acid in the diet: Its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot Essent Fatty Acids 70: 361–372.

    PubMed  CAS  Google Scholar 

  • Hou YM, Chang V, Capper AB, Taussig R, Gautam N. 2001. G protein beta subunit types differentially interact with a muscarinic receptor but not adenylyl cyclase type II or phospholipase C-beta 2/3. J Biol Chem 276: 19982–19988.

    PubMed  CAS  Google Scholar 

  • Ishii S, Nagase T, Shimizu T. 2002. Platelet-activating factor receptor. Prostaglandins Other Lipid Mediat 68&69: 599–609.

    Google Scholar 

  • Ivanova PT, Milne SB, Forrester JS, Brown HA. 2004. Lipid arrays: New tools in the understanding of membrane dynamics and lipid signaling. Mol Interv 4: 86–96.

    PubMed  CAS  Google Scholar 

  • Jenkins GM, Frohman MA. 2005. Phospholipase D: A lipid centric review. Cell Mol Life Sci 62: 2305–2316.

    PubMed  CAS  Google Scholar 

  • Jupp OJ, Vandenabeele P, MacEwan DJ. 2003. Distinct regulation of cytosolic phospholipase A2 phosphorylation, translocation, proteolysis and activation by tumour necrosis factor-receptor subtypes. Biochem J 374: 453–461.

    PubMed  CAS  Google Scholar 

  • Kent C. 2005. Regulatory enzymes of phosphatidylcholine biosynthesis: A personal perspective. Biochim Biophys Acta Mol Cell Biol Lipids 1733: 53–66.

    CAS  Google Scholar 

  • Kent C, Carman GM. 1999. Interactions among pathways for phosphatidylcholine metabolism, CTP synthesis and secretion through the Golgi apparatus. Trends Biochem Sci 24: 146–150.

    PubMed  CAS  Google Scholar 

  • Kim JH, Lee BD, Kim Y, Lee SD, Suh PG, et al. 1999. Cytosolic phospholipase A2-mediated regulation of phospholipase D2 in leukocyte cell lines. J Immunol 163: 5462–5470.

    PubMed  CAS  Google Scholar 

  • Klein J, Chalifa V, Liscovitch M, Löffelholz K. 1995. Role of phospholipase D activation in nervous system physiology and pathophysiology. J Neurochem 65: 1445–1455.

    PubMed  CAS  Google Scholar 

  • Kolko M, DeCoster MA, Rodriguez de Turco EB, Bazan NG. 1996. Synergy by secretory phospholipase A2 and glutamate on inducing cell death and sustained arachidonic acid metabolic changes in primary cortical neuronal cultures. J Biol Chem 271: 32722–32728.

    PubMed  CAS  Google Scholar 

  • Kontos HA, Wei EP, Kukreja RC, Ellis EF, Hess ML. 1990. Differences in endothelium-dependent cerebral dilation by bradykinin and acetylcholine. Am J Physiol 258: H1261–H1266.

    PubMed  CAS  Google Scholar 

  • Lee TC. 1998. Biosynthesis and possible biological functions of plasmalogens. Biochim Biophys Acta Lipids Lipid Metab 1394: 129–145.

    CAS  Google Scholar 

  • Maclennan KM, Smith PF, Darlington CL. 1996. Platelet-activating factor in the CNS. Prog Neurobiol 50: 585–596.

    PubMed  CAS  Google Scholar 

  • Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, et al. 2003. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278: 43807–43817.

    PubMed  CAS  Google Scholar 

  • Marignani PA, Epand RM, Sebaldt RJ. 1996. Acyl chain dependence of diacylglycerol activation of protein kinase C activity in vitro. Biochem Biophys Res Commun 225: 469–473.

    PubMed  CAS  Google Scholar 

  • McDermott M, Wakelam MJO, Morris AJ. 2004. Phospholipase D. Biochem Cell Biol 82: 225–253.

    PubMed  CAS  Google Scholar 

  • Morishita J, Okamoto Y, Tsuboi K, Ueno M, Sakamoto H, et al. 2005. Regional distribution and age-dependent expression of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D in rat brain. J Neurochem 94: 753–762.

    PubMed  CAS  Google Scholar 

  • Mouton PR, Arendash GW. 1990. Atrophy of cholinergic neurons within the rat nucleus basalis magnocellularis following intracortical AF64A infusion. Neurosci Lett 111: 52–57.

    PubMed  CAS  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG. 2004. Neuroprotectin D1: A docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci USA 101: 8491–8496.

    PubMed  CAS  Google Scholar 

  • Nagan N, Zoeller RA. 2001. Plasmalogens: Biosynthesis and functions. Prog Lipid Res 40: 199–229.

    PubMed  CAS  Google Scholar 

  • Negre-Aminou P, Nemenoff RA, Wood MR, de la Houssaye BA, Pfenninger KH. 1996. Characterization of phospholipase A2 activity enriched in the nerve growth cone. J Neurochem 67: 2599–2608.

    PubMed  CAS  Google Scholar 

  • Negretti N, Pérez MR, Walker D, O’Neill SC. 2000. Inhibition of sarcoplasmic reticulum function by polyunsaturated fatty acids in intact, isolated myocytes from rat ventricular muscle. J Physiol (Lond) 523: 367–375.

    CAS  Google Scholar 

  • Oram JF, Wolfbauer G, Vaughan AM, Tang CR, Albers JJ. 2003. Phospholipid transfer protein interacts with and stabilizes ATP-binding cassette transporter A1 and enhances cholesterol efflux from cells. J Biol Chem 278: 52379–52385.

    PubMed  CAS  Google Scholar 

  • Panchalingam S, Undie AS. 2001. SKF83959 exhibits biochemical agonism by stimulating [35S] GTPγ S binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 40: 826–837.

    PubMed  CAS  Google Scholar 

  • Pete MJ, Exton JH. 1996. Purification of a lysophospholipase from bovine brain that selectively deacylates arachidonoyl-substituted lysophosphatidylcholine. J Biol Chem 271: 18114–18121.

    PubMed  CAS  Google Scholar 

  • Pete MJ, Ross AH, Exton JH. 1994. Purification and properties of phospholipase A1 from bovine brain. J Biol Chem 269: 19494–19500.

    PubMed  CAS  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA. 2006. Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: Their role and involvement in neurological disorders. Brain Res Rev 52: 201–243.

    PubMed  CAS  Google Scholar 

  • Pomorski T, Holthuis JCM, Herrmann A, Van Meer G. 2004. Tracking down lipid flippases and their biological functions. J Cell Sci 117: 805–813.

    PubMed  CAS  Google Scholar 

  • Porcellati G. 1983. Phospholipid metabolism in neural membranes. Neural Membranes. Sun GY, Bazan N, Wu JY, Porcellati G, Sun AY, editors. New York: Humana Press; pp. 3–35.

    Google Scholar 

  • Ramoni C, Spadaro F, Menegon M, Podo F. 2001. Cellular localization and functional role of phosphatidylcholine-specific phospholipase C in NK cells. J Immunol 167: 2642–2650.

    PubMed  CAS  Google Scholar 

  • Ross BM. 2003. Phospholipase A2-associated processes in the human brain and their role in neuropathology and psychopathology. Phospholipid Spectrum Disorders in Psychiatry and Neurology. Peet M, Glen L, Horrobin DF, editors. Carnforth, Lancashire: Marius Press; pp. 163–182.

    Google Scholar 

  • Ross BM, Kim DK, Bonventre JV, Kish SJ. 1995. Characterization of a novel phospholipase A2 activity in human brain. J Neurochem 64: 2213–2221.

    PubMed  CAS  Google Scholar 

  • Sastry PS, Rao KS. 2000. Apoptosis and the nervous system. J Neurochem 74: 1–20.

    PubMed  CAS  Google Scholar 

  • Schütze S, Potthoff K, Machleidt T, Berkovic D, Wiegmann K, et al. 1992. TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “acidic” sphingomyelin breakdown. Cell 71: 765–776.

    PubMed  Google Scholar 

  • Serhan CN. 2005. Novel eicosanoid and docosanoid mediators: Resolvins, docosatrienes, and neuroprotectins. Curr Opin Clin Nutr Metab Care 8: 115–121.

    PubMed  CAS  Google Scholar 

  • Serhan CN, Gotlinger K, Hong S, Arita M. 2004. Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: An overview of their protective roles in catabasis. Prostaglandins Other Lipid Mediat 73: 155–172.

    PubMed  CAS  Google Scholar 

  • Shen YJ, Xu LZ, Foster DA. 2001. Role for phospholipase D in receptor-mediated endocytosis. Mol Cell Biol 21: 595–602.

    PubMed  CAS  Google Scholar 

  • Shields DJ, Agellon LB, Vance DE. 2001. Structure, expression profile and alternative processing of the human phosphatidylethanolamine N-methyltransferase (PEMT) gene. Biochim Biophys Acta Mol Cell Biol Lipids 1532: 105–114.

    CAS  Google Scholar 

  • Stillwell W, Wassall SR. 2003. Docosahexaenoic acid: Membrane properties of a unique fatty acid. Chem Phys Lipids 126: 1–27.

    PubMed  CAS  Google Scholar 

  • Strokin M, Sergeeva M, Reiser G. 2003. Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 139: 1014–1022.

    PubMed  CAS  Google Scholar 

  • Sugimoto H, Sugimoto S, Tatei K, Obinata H, Bakovic M, et al. 2003. Identification of Ets-1 as an important transcriptional activator of CTP: Phosphocholine cytidylyltransferase alpha in COS-7 cells and co-activation with transcriptional enhancer factor-4. J Biol Chem 278: 19716–19722.

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kodaka T, Nakane S, Miyashita T, Kondo S, et al. 1999. Evidence that the cannabinoid CB1 receptor is a 2-arachidonoylglycerol receptor-structure-activity relationship of 2-arachidonoylglycerol ether-linked analogues, and related compounds. J Biol Chem 274: 2794–2801.

    PubMed  CAS  Google Scholar 

  • Tillman TS, Cascio M. 2003. Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38: 161–190.

    PubMed  CAS  Google Scholar 

  • Tokuoka SM, Ishii S, Kawamura N, Satoh M, Shimada A, et al. 2003. Involvement of platelet-activating factor and LIS1 in neuronal migration. Eur J Neurosci 18: 563–570.

    PubMed  Google Scholar 

  • Ueda N, Okamoto Y, Tsuboi K. 2005. Endocannabinoid-related enzymes as drug targets with special reference to N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. Curr Med Chem 12: 1413–1422.

    PubMed  CAS  Google Scholar 

  • Vallée B, Teyssier C, Maget-Dana R, Ramstein J, Bureaud N, et al. 1999. Stability and physicochemical properties of the bovine brain phosphatidylethanolamine-binding protein. Eur J Biochem 266: 40–52.

    PubMed  Google Scholar 

  • Van Meer G, Sprong H. 2004. Membrane lipids and vesicular traffic. Curr Opin Cell Biol 16: 373–378.

    PubMed  CAS  Google Scholar 

  • Vance JE, Vance DE. 2004. Phospholipid biosynthesis in mammalian cells. Biochem Cell Biol 82: 113–128.

    PubMed  CAS  Google Scholar 

  • Vance JE, Vance DE. 2005. Metabolic insights into phospholipid function using gene-targeted mice. J Biol Chem 280: 10877–10880.

    PubMed  CAS  Google Scholar 

  • Vial D, Piomelli D. 1995. Dopamine D2 receptors potentiate arachidonate release via activation of cytosolic, arachidonate-specific phospholipase A2. J Neurochem 64: 2765–2772.

    PubMed  CAS  Google Scholar 

  • Vitale M, Rezzani R, Gobbi G, Ponti C, Matteucci A, et al. 2004. Phospholipase-Cβ1 is predominantly expressed in the granular layer of rat cerebellar cortex. Int J Mol Med 14: 161–164.

    PubMed  CAS  Google Scholar 

  • Voelker DR. 2003. New perspectives on the regulation of intermembrane glycerophospholipid traffic. J Lipid Res 44: 441–449.

    PubMed  CAS  Google Scholar 

  • Wang XJ, Li N, Liu B, Sun HY, Chen TY, et al. 2004. A novel human phosphatidylethanolamine-binding protein resists tumor necrosis factor alpha-induced apoptosis by inhibiting mitogen-activated protein kinase pathway activation and phosphatidylethanolamine externalization. J Biol Chem 279: 45855–45864.

    PubMed  CAS  Google Scholar 

  • Watkins SM, Zhu XN, Zeisel SH. 2003. Phosphatidylethanolamine-N-methyltransferase activity and dietary choline regulate liver-plasma lipid flux and essential fatty acid metabolism in mice. J Nutr 133: 3386–3391.

    PubMed  CAS  Google Scholar 

  • Williamson P, Schlegel RA. 2002. Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim Biophys Acta Mol Cell Biol Lipids 1585: 53–63.

    CAS  Google Scholar 

  • Wright MM, McMaster CR. 2002. PC and PE synthesis: Mixed micellar analysis of the cholinephosphotransferase and ethanolaminephosphotransferase activities of human choline/ethanolamine phosphotransferase 1 (CEPT1). Lipids 37: 663–672.

    PubMed  CAS  Google Scholar 

  • Yang HC, Mosior M, Ni B, Dennis EA. 1999. Regional distribution, ontogeny, purification, and characterization of the Ca2+ -independent phospholipase A2 from rat brain. J Neurochem 73: 1278–1287.

    PubMed  CAS  Google Scholar 

  • Yoshihara Y, Watanabe Y. 1990. Translocation of phospholipase A2 from cytosol to membranes in rat brain induced by calcium ions. Biochem Biophys Res Commun 170: 484–490.

    PubMed  CAS  Google Scholar 

  • Zhang Y, Huang P, Du GW, Kanaho Y, Frohman MA, et al. 2004. Increased expression of two phospholipase D isoforms during experimentally induced hippocampal mossy fiber outgrowth. Glia 46: 74–83.

    PubMed  Google Scholar 

  • Zhu XN, Song JN, Mar MH, Edwards LJ, Zeisel SH. 2003. Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. Biochem J 370: 987–993.

    PubMed  CAS  Google Scholar 

  • Zian Z, Drewes LR. 1991. Cross-talk between receptor-regulated phospholipase D and phospholipase D in brain. FASEB J 5: 315–319.

    Google Scholar 

  • Zweigner J, Jackowski S, Smith SH, van der Merwe M, Weber JR, et al. 2004. Bacterial inhibition of phosphatidylcholine synthesis triggers apoptosis in the brain. J Exp Med 200: 99–106.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this entry

Cite this entry

Farooqui, A.A., Horrocks, L.A., Farooqui, T. (2009). Choline and Ethanolamine Glycerophospholipids. In: Lajtha, A., Tettamanti, G., Goracci, G. (eds) Handbook of Neurochemistry and Molecular Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-30378-9_2

Download citation

Publish with us

Policies and ethics