Lipid Mediators and Modulators of Neural Function: Lysophosphatidate and Lysolipids

  • D. N. Brindley
  • A. U. Bräuer
Reference work entry


There is an increasing body of knowledge that demonstrates important roles for lysophosphatidate (LPA) and other biologically active lipids in controlling cell signaling including regulation of cell division, death, and movement. These processes are important aspects of brain development, repair, and the normal functioning of the brain. We now know that LPA activates at least five G-protein coupled receptors. The signal that cells receive depends upon the G-proteins that couple to the receptors and the relative expression of various receptors on different cells. Additionally, the role of LPA in controlling signal transduction is regulated by enzymes that are responsible for its turnover and also for controlling signaling events downstream of receptor activation.


Experimental Autoimmune Encephalomyelitis PAP1 Activity Bioactive Lipid Secretory Phospholipase Choroid Plexus Epithelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations:


autotaxin or lysophospholipase D


central nervous system


ceramide 1-phosphate


arachidonic acid




experimental autoimmune encephalomyelitis


epilepsy with mental retardation


lecithin:cholesterol acyltransferase, LPA, lysophosphatidate






multiple sclerosis




phospholipase D


plasticity related genes


sphingosine 1-phosphate




  1. Abousalham A, Hobman TC, Dewald J, Garbutt M, Brindley DN. 2002. Cell-permeable ceramides preferentially inhibit coated vesicle formation and exocytosis in Chinese hamster ovary compared with Madin-Darby canine kidney cells by preventing the membrane association of ADP-ribosylation factor. Biochem J 361: 653–661.PubMedGoogle Scholar
  2. Abousalham A, Liossis C, O’Brien L, Brindley DN. 1997. Cell-permeable ceramides prevent the activation of phospholipase D by ADP-ribosylation factor and RhoA. J Biol Chem 272: 1069–1075.PubMedGoogle Scholar
  3. Alderton F, Darroch P, Sambi B, McKie A, Ahmed IS, et al. 2001. G-protein-coupled receptor stimulation of the p42/p44 mitogen-activated protein kinase pathway is attenuated by lipid phosphate phosphatases 1, 1a, and 2 in human embryonic kidney 293 cells. J Biol Chem 276: 13452–13460.PubMedGoogle Scholar
  4. Avila-Flores A, Santos T, Rincon E, Merida I. 2005. Modulation of the mammalian target of rapamycin pathway by diacylglycerol kinase-produced phosphatidic acid. J Biol Chem 280: 10091–10099.PubMedGoogle Scholar
  5. Bajjalieh SM, Martin TFJ, Floor E. 1989. Synaptic vesicle ceramide kinase. J Biol Chem 264: 14354–14360.PubMedGoogle Scholar
  6. Bandoh K, Aoki J, Hosono H, Kobayashi S, Kobayashi T, et al. 1999. Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. J Biol Chem 274: 27776–27785.PubMedGoogle Scholar
  7. Basavarajappa BS. 2007. Critical enzymes involved in endocannabinoid metabolism. Protein Pept Lett 14: 237–246.PubMedGoogle Scholar
  8. Bazan NG, Birkle DL, Tang W, Reddy TS. 1986. The accumulation of free arachidonic acid, diacylglycerols, prostaglandins, and lipoxygenase reaction products in the brain during experimental epilepsy. Adv Neurol 44: 879–902.PubMedGoogle Scholar
  9. Bazan NG, Tu B, Rodriguez de Turco EB. 2002. What synaptic lipid signaling tells us about seizure-induced damage and epileptogenesis. Prog Brain Res 135: 175–185.PubMedGoogle Scholar
  10. Bolick DT, Whetzel AM, Skaflen M, Deem TL, Lee J, et al. 2007. Absence of the G protein-coupled receptor G2A in mice promotes monocyte/endothelial interactions in aorta. Circ Res 100: 572–580.PubMedGoogle Scholar
  11. Bonventre JV. 1999. The 85-kD cytosolic phospholipase A2 knockout mouse: A new tool for physiology and cell biology. J Am Soc Nephrol 10: 404–412.PubMedGoogle Scholar
  12. Brauer AU, Savaskan NE, Kuhn H, Prehn S, Ninnemann O, et al. 2003. A new phospholipid phosphatase, PRG-1, is involved in axon growth and regenerative sprouting. Nat Neurosci 6: 572–578.PubMedGoogle Scholar
  13. Brindley DN. 1988. Phosphatidate Phosphohydrolase: Its Role in Glycerolipid Synthesis, Vol. 1. Boca Raton: CRC Press Inc.Google Scholar
  14. Brindley DN. 1993. Hepatic secretion of lysphosphatidylcholine: A novel transport system for polyunsaturated fatty acids and choline. J Nutr Biochem 4: 442–449.Google Scholar
  15. Brindley DN. 2004. Lipid phosphate phosphatases and related proteins: Signaling functions in development, cell division, and cancer. J Cell Biochem 92: 900–912.PubMedGoogle Scholar
  16. Brindley DN, Waggoner DW. 1998. Mammalian lipid phosphate phosphohydrolases. J Biol Chem 273: 24281–24284.PubMedGoogle Scholar
  17. Burger PC, Dubois PJ, Schold SC Jr, Smith KR Jr, Odom GL, et al. 1983. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 58: 159–169.PubMedGoogle Scholar
  18. Burnett C, Howard K. 2003. Fly and mammalian lipid phosphate phosphatase isoforms differ in activity both in vitro and in vivo. EMBO Rep 4: 793–799.PubMedGoogle Scholar
  19. Carman GM, Han GS. 2006. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem Sci 31: 694–699.PubMedGoogle Scholar
  20. Claesson-Welch L. 1994. Platelet-derived growth factor receptor signals. J Biol Chem 269: 32023–32026.Google Scholar
  21. Clair T, Aoki J, Koh E, Bandle RW, Nam SW, et al. 2003. Autotaxin hydrolyzes sphingosylphosphorylcholine to produce the regulator of migration, sphingosine-1-phosphate. Cancer Res 63: 5446–5453.PubMedGoogle Scholar
  22. Contos JJ, Chun J. 1998. Complete cDNA sequence, genomic structure, and chromosomal localization of the LPA receptor gene, lpA1/vzg-1/Gpcr26. Genomics 51: 364–378.PubMedGoogle Scholar
  23. Contos JJ, Chun J. 2001. The mouse lp(A3)/Edg7 lysophosphatidic acid receptor gene: Genomic structure, chromosomal localization, and expression pattern. Gene 267: 243–253.PubMedGoogle Scholar
  24. Contos JJ, Ishii I, Chun J. 2000. Lysophosphatidic acid receptors. Mol Pharmacol 58: 1188–1196.PubMedGoogle Scholar
  25. Contos JJ, Ishii I, Fukushima N, Kingsbury MA, Ye X, et al. 2002. Characterization of lpa(2) (Edg4) and lpa(1)/lpa(2) (Edg2/Edg4) lysophosphatidic acid receptor knockout mice: Signaling deficits without obvious phenotypic abnormality attributable to lpa(2). Mol Cell Biol 22: 6921–6929.PubMedGoogle Scholar
  26. Cross MJ, Roberts S, Ridley AJ, Hodgkin MN, Stewart A, et al. 1996. Stimulation of actin stress fibre formation mediated by activation of phospholipase D. Curr Biol 6: 588–597.PubMedGoogle Scholar
  27. Dahlin M, Hjelte L, Nilsson S, Amark P. 2007. Plasma phospholipid fatty acids are influenced by a ketogenic diet enriched with n-3 fatty acids in children with epilepsy. Epilepsy Res 73: 199–207.PubMedGoogle Scholar
  28. Daub H, Weiss FU, Wallasch C, Ullrich A. 1996. Role of transactivation of the EGF receptor in signalling by G-protein-coupled receptors. Nature 379: 557–560.PubMedGoogle Scholar
  29. Delon C, Manifava M, Wood E, Thompson D, Krugmann S, et al. 2004. Sphingosine kinase 1 is an intracellular effector of phosphatidic acid. J Biol Chem 279: 44763–44774.PubMedGoogle Scholar
  30. Dennis J, Nogaroli L, Fuss B. 2005. Phosphodiesterase-Ialpha/autotaxin (PD-Ialpha/ATX): A multifunctional protein involved in central nervous system development and disease. J Neurosci Res 82: 737–742.PubMedGoogle Scholar
  31. Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K. 2007. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem 282: 3450–3457.PubMedGoogle Scholar
  32. English D, Brindley DN, Spiegel S, Garcia JG. 2002. Lipid mediators of angiogenesis and the signalling pathways they initiate. Biochim Biophys Acta 1582: 228–239.PubMedGoogle Scholar
  33. English D, Garcia JG, Brindley DN. 2001. Platelet-released phospholipids link haemostasis and angiogenesis. Cardiovasc Res 49: 588–599.PubMedGoogle Scholar
  34. Escalante-Alcalde D, Hernandez L, Le Stunff H, Maeda R, Lee HS, et al. 2003. The lipid phosphatase LPP3 regulates extra-embryonic vasculogenesis and axis patterning. Development 130: 4623–4637.PubMedGoogle Scholar
  35. Fang Y, Vilella-Bach M, Bachmann R, Flanigan A, Chen J. 2001. Phosphatidic acid-mediated mitogenic activation of mTOR signaling. Science 294: 1942–1945.PubMedGoogle Scholar
  36. Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, et al. 2006. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 4: 199–210.PubMedGoogle Scholar
  37. Fourcade O, Simon MF, Viode C, Rugani N, Leballe F, et al. 1995. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 80: 919–927.PubMedGoogle Scholar
  38. Fox MA, Alexander JK, Afshari FS, Colello RJ, Fuss B. 2004. Phosphodiesterase-I alpha/autotaxin controls cytoskeletal organization and FAK phosphorylation during myelination. Mol Cell Neurosci 27: 140–150.PubMedGoogle Scholar
  39. Freund TF, Katona I, Piomelli D. 2003. Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83: 1017–1066.PubMedGoogle Scholar
  40. Fuentes L, Perez R, Nieto ML, Balsinde J, Balboa MA. 2003. Bromoenol lactone promotes cell death by a mechanism involving phosphatidate phosphohydrolase-1 rather than calcium-independent phospholipase A2. J Biol Chem 278: 44683–44690.PubMedGoogle Scholar
  41. Fukushima N. 2004. LPA in neural cell development. J Cell Biochem 92: 993–1003.PubMedGoogle Scholar
  42. Fukushima N, Ishii I, Contos JJ, Weiner JA, Chun J. 2001. Lysophospholipid receptors. Annu Rev Pharmacol Toxicol 41: 507–534.PubMedGoogle Scholar
  43. Fukushima N, Kimura Y, Chun J. 1998. A single receptor encoded by vzg-1/lpA1/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proc Natl Acad Sci USA 95: 6151–6156.PubMedGoogle Scholar
  44. Fukushima N, Weiner JA, Chun J. 2000. Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphology. Dev Biol 228: 6–18.PubMedGoogle Scholar
  45. Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB. 1997. Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 17: 9095–9103.PubMedGoogle Scholar
  46. Ghosh S, Strum JC, Sciorra VA, Daniel L, Bell RM. 1996. Raf-1 kinase possesses distinct binding domains for phosphatidylserine and phosphatidic acid. Phosphatidic acid regulates the translocation of Raf-1 in 12-O-tetradecanoylphorbol-13-acetate-stimulated Madin-Darby canine kidney cells. J Biol Chem 271: 8472–8480.PubMedGoogle Scholar
  47. Gobeil F Jr, Bernier SG, Vazquez-Tello A, Brault S, Beauchamp MH, et al. 2003. Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J Biol Chem 278: 38875–38883.PubMedGoogle Scholar
  48. Goetzl EJ, An S. 1998. Diversity of cellular receptors and functions for the lysophospholipid growth factors lysophosphatidic acid and sphingosine 1-phosphate. Faseb J 12: 1589–1598.PubMedGoogle Scholar
  49. Gokoh M, Kishimoto S, Oka S, Mori M, Waku K, et al. 2005. 2-arachidonoylglycerol, an endogenous cannabinoid receptor ligand, induces rapid actin polymerization in HL-60 cells differentiated into macrophage-like cells. Biochem J 386: 583–589.PubMedGoogle Scholar
  50. Gómez-Muñoz A, Duffy PA, Martin A, O’Brien L, Byun HS, et al. 1995. Short-chain ceramide-1-phosphates are novel stimulators of DNA synthesis and cell division: Antagonism by cell-permeable ceramides. Mol Pharmacol 47: 833–839.PubMedGoogle Scholar
  51. Gómez-Muñoz A, Kong JY, Salh B, Steinbrecher UP. 2004. Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages. J Lipid Res 45: 99–105.PubMedGoogle Scholar
  52. Goppelt-Struebe M, Fickel S, Reiser CO. 2000. The platelet-derived-growth-factor receptor, not the epidermal-growth-factor receptor, is used by lysophosphatidic acid to activate p42/44 mitogen-activated protein kinase and to induce prostaglandin G/H synthase-2 in mesangial cells. Biochem J 345(Pt 2): 217–224.PubMedGoogle Scholar
  53. Graham A, Bennett AJ, McLean AA, Zammit VA, Brindley DN. 1988a. Factors regulating the secretion of lysophosphatidylcholine by rat hepatocytes compared with the synthesis and secretion of phosphatidylcholine and triacylglycerol. Effects of albumin, cycloheximide, verapamil, EGTA and chlorpromazine. Biochem J 253: 687–692.PubMedGoogle Scholar
  54. Graham A, Zammit VA, Brindley DN. 1988b. Fatty acid specificity for the synthesis of triacylglycerol and phosphatidylcholine and for the secretion of very-low-density lipoproteins and lysophosphatidylcholine by cultures of rat hepatocytes. Biochem J 249: 727–733.PubMedGoogle Scholar
  55. Graham A, Zammit VA, Christie WW, Brindley DN. 1991. Sexual dimorphism in the preferential secretion of unsaturated lysophosphatidylcholine by rat hepatocytes but no secretion by sheep hepatocytes. Biochim Biophys Acta 1081: 151–158.PubMedGoogle Scholar
  56. Grkovich A, Johnson CA, Buczynski MW, Dennis EA. 2006. Lipopolysaccharide-induced cyclooxygenase-2 expression in human U937 macrophages is phosphatidic acid phosphohydrolase-1-dependent. J Biol Chem 281: 32978–32987.PubMedGoogle Scholar
  57. Guo Z, Liliom K, Fischer DJ, Bathurst IC, Tomei LD, et al. 1996. Molecular cloning of a high-affinity receptor for the growth factor-like lipid mediator lysophosphatidic acid from Xenopus oocytes. Proc Natl Acad Sci USA 93: 14367–14372.PubMedGoogle Scholar
  58. Ha KS, Exton JH. 1993. Activation of actin polymerization by phosphatidic acid derived from phosphatidylcholine in IIC9 fibroblasts. J Cell Biol 123: 1789–1796.PubMedGoogle Scholar
  59. Hammack BN, Fung KY, Hunsucker SW, Duncan MW, Burgoon MP, et al. 2004. Proteomic analysis of multiple sclerosis cerebrospinal fluid. Mult Scler 10: 245–260.PubMedGoogle Scholar
  60. Han GS, Siniossoglou S, Carman GM. 2007. The cellular functions of the yeast lipin homolog pah1p are dependent on its phosphatidate phosphatase activity. J Biol Chem. 282: 37026-37035.Google Scholar
  61. Han GS, Wu WI, Carman GM. 2006. The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 281: 9210–9218.PubMedGoogle Scholar
  62. Hanna AN, Xu J, Brindley DN. 2001. Tumor necrosis factor-alpha, sphingomyelinase and ceramides activate tyrosine kinase, p21Ras and phosphatidylinositol 3-kinase: Implications for glucose transport and insulin resistance. Adv Exp Med Biol 498: 191–200.PubMedGoogle Scholar
  63. Harris TE, Huffman TA, Chi A, Shabanowitz J, Hunt DF, et al. 2007. Insulin controls subcellular localization and multisite phosphorylation of the phosphatidic acid phosphatase, lipin 1. J Biol Chem 282: 277–286.PubMedGoogle Scholar
  64. Hecht JH, Weiner JA, Post SR, Chun J. 1996. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol 135: 1071–1083.PubMedGoogle Scholar
  65. Hermansson M, Kakela R, Berghall M, Lehesjoki AE, Somerharju P, et al. 2005. Mass spectrometric analysis reveals changes in phospholipid, neutral sphingolipid and sulfatide molecular species in progressive epilepsy with mental retardation, EPMR, brain: A case study. J Neurochem 95: 609–617.PubMedGoogle Scholar
  66. Herrlich A, Daub H, Knebel A, Herrlich P, Ullrich A, et al. 1998. Ligand-independent activation of platelet-derived growth factor receptor is a necessary intermediate in lysophosphatidic, acid-stimulated mitogenic activity in L cells. Proc Natl Acad Sci USA 95: 8985–8990.PubMedGoogle Scholar
  67. Herva R, Tyynela J, Hirvasniemi A, Syrjakallio-Ylitalo M, Haltia M. 2000. Northern epilepsy: A novel form of neuronal ceroid-lipofuscinosis. Brain Pathol 10: 215–222.PubMedGoogle Scholar
  68. Hillard CJ. 2000. Endocannabinoids and vascular function. J Pharmacol Exp Ther 294: 27–32.PubMedGoogle Scholar
  69. Hinkovska-Galcheva VT, Boxer LA, Mansfield PJ, Harsh D, Blackwood A, et al. 1998. The formation of ceramide-1-phosphate during neutrophil phagocytosis and its role in liposome fusion. J Biol Chem 273: 33203–33209.PubMedGoogle Scholar
  70. Hoelzinger DB, Mariani L, Weis J, Woyke T, Berens TJ, et al. 2005. Gene expression profile of glioblastoma multiforme invasive phenotype points to new therapeutic targets. Neoplasia 7: 7–16.PubMedGoogle Scholar
  71. Hooks SB, Ragan SP, Lynch KR. 1998. Identification of a novel human phosphatidic acid phosphatase type 2 isoform. FEBS Lett 427: 188–192.PubMedGoogle Scholar
  72. Huijbregts RP, Topalof L, Bankaitis VA. 2000. Lipid metabolism and regulation of membrane trafficking. Traffic 1: 195–202.PubMedGoogle Scholar
  73. Imai A, Furui T, Tamaya T, Mills GB. 2000. A gonadotropin-releasing hormone-responsive phosphatase hydrolyses lysophosphatidic acid within the plasma membrane of ovarian cancer cells. J Clin Endocrinol Metab 85: 3370–3375.PubMedGoogle Scholar
  74. Jamal Z, Martin A, Gómez-Muñoz A, Brindley DN. 1991. Plasma membrane fractions from rat liver contain a phosphatidate phosphohydrolase distinct from that in the endoplasmic reticulum and cytosol. J Biol Chem 266: 2988–2996.PubMedGoogle Scholar
  75. Jasinska R, Zhang QX, Pilquil C, Singh I, Xu J, et al. 1999. Lipid phosphate phosphohydrolase-1 degrades exogenous glycerolipid and sphingolipid phosphate esters. Biochem J 340(Pt 3): 677–686.PubMedGoogle Scholar
  76. Jiang Y, Lu Z, Zang Q, Foster DA. 1996. Regulation of phosphatidic acid phosphohydrolase by epidermal growth factor. Reduced association with the EGF receptor followed by increased association with protein kinase Cepsilon. J Biol Chem 271: 29529–29532.PubMedGoogle Scholar
  77. Johnson CA, Balboa MA, Balsinde J, Dennis EA. 1999. Regulation of cyclooxygenase-2 expression by phosphatidate phosphohydrolase in human amnionic WISH cells. J Biol Chem 274: 27689–27693.PubMedGoogle Scholar
  78. Jones GA, Carpenter G. 1993. The regulation of phospholipase-Cβ by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem 268: 20845–20850.PubMedGoogle Scholar
  79. Jones JA, Hannun YA. 2002. Tight binding inhibition of protein phosphatase-1 by phosphatidic acid. Specificity of inhibition by the phospholipid. J Biol Chem 277: 15530–15538.PubMedGoogle Scholar
  80. Jones D, Morgan C, Cockcroft S. 1999. Phospholipase D and membrane traffic. Potential roles in regulated exocytosis, membrane delivery and vesicle budding. Biochim Biophys Acta 1439: 229–244.PubMedGoogle Scholar
  81. Kabarowski JH, Zhu K, Le LQ, Witte ON, Xu Y. 2001. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 293: 702–705.PubMedGoogle Scholar
  82. Kai M, Wada I, Imai S, Sakane F, Kanoh H. 1997. Cloning and characterization of two human isozymes of Mg2+-independent phosphatidic acid phosphatase. J Biol Chem 272: 24572–24578.PubMedGoogle Scholar
  83. Kam Y, Exton JH. 2004. Role of phospholipase D1 in the regulation of mTOR activity by lysophosphatidic acid. Faseb J 18: 311–319.PubMedGoogle Scholar
  84. Katsura K, Rodriguez de Turco EB, Kristian T, Folbergrova J, Bazan NG, et al. 2000. Alterations in lipid and calcium metabolism associated with seizure activity in the postischemic brain. J Neurochem 75: 2521–2527.PubMedGoogle Scholar
  85. Kim KS, Ren J, Jiang Y, Ebrahem Q, Tipps R, et al. 2005. GPR4 plays a critical role in endothelial cell function and mediates the effects of sphingosylphosphorylcholine. Faseb J 19: 819–821.PubMedGoogle Scholar
  86. Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J. 2003. Non-proliferative effects of lysophosphatidic acid enhance cortical growth and folding. Nat Neurosci 6: 1292–1299.PubMedGoogle Scholar
  87. Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, et al. 2006. Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 281: 17492–17500.PubMedGoogle Scholar
  88. Kishimoto S, Gokoh M, Oka S, Muramatsu M, Kajiwara T, et al. 2003. 2-arachidonoylglycerol induces the migration of HL-60 cells differentiated into macrophage-like cells and human peripheral blood monocytes through the cannabinoid CB2 receptor-dependent mechanism. J Biol Chem 278: 24469–24475.PubMedGoogle Scholar
  89. Kishimoto S, Muramatsu M, Gokoh M, Oka S, Waku K, et al. 2005. Endogenous cannabinoid receptor ligand induces the migration of human natural killer cells. J Biochem (Tokyo) 137: 217–223.Google Scholar
  90. Kishimoto T, Soda Y, Matsuyama Y, Mizuno K. 2002. An enzymatic assay for lysophosphatidylcholine concentration in human serum and plasma. Clin Biochem 35: 411–416.PubMedGoogle Scholar
  91. Kolesnick RN, Hemer MR. 1990. Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J Biol Chem 265: 18803–18808.PubMedGoogle Scholar
  92. Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, et al. 2006. Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. J Pharmacol Exp Ther 318: 619–628.PubMedGoogle Scholar
  93. Ktistakis NT, Brown HA, Sternweis PC, Roth MG. 1995. Phospholipase D is present on Golgi-enriched membranes and its activation by ADP ribosylation factor is sensitive to brefeldin A. Proc Natl Acad Sci USA 92: 4952–4956.PubMedGoogle Scholar
  94. Ktistakis NT, Brown A, Waters GM, Sternweis PC, Roth MG. 1996. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol 134: 295–306.PubMedGoogle Scholar
  95. Kulagina TP, Shevchenko NA, Arkhipov VI. 2004. Influence of seizures on lipids of homogenate and neuronal and glial nuclei of rat neocortex. Biochemistry (Mosc) 69: 1143–1147.Google Scholar
  96. Lee CW, Rivera R, Dubin AE, Chun J. 2007. LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. J Biol Chem 282: 4310–4317.PubMedGoogle Scholar
  97. Lee CW, Rivera R, Gardell S, Dubin AE, Chun J. 2006. GPR92 as a New G12/13- and Gq-coupled Lysophosphatidic Acid Receptor That Increases cAMP, LPA5. J Biol Chem 281: 23589–23597.PubMedGoogle Scholar
  98. Limatola C, Schaap D, Moolenaar WH, van Blitterswijk WJ. 1994. Phosphatidic acid activation of protein kinase C-zeta overexpressed in COS cells: Comparison with other protein kinase C isotypes and other acidic lipids. Biochem J 304(Pt 3): 1001–1008.PubMedGoogle Scholar
  99. Lin P, Ye RD. 2003. The lysophospholipid receptor G2A activates a specific combination of G proteins and promotes apoptosis. J Biol Chem 278: 14379–14386.PubMedGoogle Scholar
  100. Long J, Darroch P, Wan KF, Kong KC, Ktistakis N, et al. 2005. Regulation of cell survival by lipid phosphate phosphatases involves the modulation of intracellular phosphatidic acid and sphingosine 1-phosphate pools. Biochem J 391: 25–32.PubMedGoogle Scholar
  101. Long JS, Yokoyama K, Tigyi G, Pyne NJ, Pyne S. 2006. Lipid phosphate phosphatase-1 regulates lysophosphatidic acid- and platelet-derived-growth-factor-induced cell migration. Biochem J 394: 495–500.PubMedGoogle Scholar
  102. Lum H, Qiao J, Walter RJ, Huang F, Subbaiah PV, et al. 2003. Inflammatory stress increases receptor for lysophosphatidylcholine in human microvascular endothelial cells. Am J Physiol Heart Circ Physiol 285: H1786–H1789.PubMedGoogle Scholar
  103. Luttrell LM, Della Rocca GJ, van Biesen T, Luttrell DK, Lefkowitz RJ. 1997. Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. J Biol Chem 272: 4637–4644.PubMedGoogle Scholar
  104. Lynch KR. 2002. Lysophospholipid receptor nomenclature. Biochim Biophys Acta 1582: 70–71.PubMedGoogle Scholar
  105. Mangiapane EH, Brindley DN. 1986. Effects of dexamethasone and insulin on the synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes. Biochem J 233: 151–160.PubMedGoogle Scholar
  106. McDermott MI, Sigal YJ, Sciorra VA, Morris AJ. 2004. Is PRG-1 a new lipid phosphatase? Nat Neurosci 7: 789; 789–790.PubMedGoogle Scholar
  107. McIntyre TM, Pontsler AV, Silva AR, St Hilaire A, Xu Y, et al. 2003. Identification of an intracellular receptor for lysophosphatidic acid (LPA): LPA is a transcellular PPARgamma agonist. Proc Natl Acad Sci USA 100: 131–136.PubMedGoogle Scholar
  108. Meyer zu Heringdorf D, Jakobs KH. 2007. Lysophospholipid receptors: Signalling, pharmacology and regulation by lysophospholipid metabolism. Biochim Biophys Acta 1768: 923–940.PubMedGoogle Scholar
  109. Moolenaar WH. 2002. Lysophospholipids in the limelight: Autotaxin takes center stage. J Cell Biol 158: 197–199.PubMedGoogle Scholar
  110. Moritz A, De Graan PN, Gispen WH, Wirtz KW. 1992. Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 267: 7207–7210.PubMedGoogle Scholar
  111. Morris KE, Schang LM, Brindley DN. 2006. Lipid phosphate phosphatase-2 activity regulates S-phase entry of the cell cycle in Rat2 fibroblasts. J Biol Chem 281: 9297–9306.PubMedGoogle Scholar
  112. Moughal NA, Waters C, Sambi B, Pyne S, Pyne NJ. 2004. Nerve growth factor signaling involves interaction between the Trk A receptor and lysophosphatidate receptor 1 systems: Nuclear translocation of the lysophosphatidate receptor 1 and Trk A receptors in pheochromocytoma 12 cells. Cell Signal 16: 127–136.PubMedGoogle Scholar
  113. Mulder C, Wahlund LO, Teerlink T, Blomberg M, Veerhuis R, et al. 2003. Decreased lysophosphatidylcholine/phosphatidylcholine ratio in cerebrospinal fluid in Alzheimer’s disease. J Neural Transm 110: 949–955.PubMedGoogle Scholar
  114. Multani P, Myers RH, Blume HW, Schomer DL, Sotrel A. 1994. Neocortical dendritic pathology in human partial epilepsy: A quantitative Golgi study. Epilepsia 35: 728–736.PubMedGoogle Scholar
  115. Murakami N, Yokomizo T, Okuno T, Shimizu T. 2004. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J Biol Chem 279: 42484–42491.PubMedGoogle Scholar
  116. Murph M, Hurst-Kennedy J, Newton V, Brindley D, Radhakrishna H. 2007. Activation of A549 lung carcinoma cells with the bioactive lipid, lysophosphatidic acid, decreases the abundance of the p53 tumor suppressor. Mol Can Res 5: 1201-1211.Google Scholar
  117. Nam SW, Clair T, Kim YS, McMarlin A, Schiffmann E, et al. 2001. Autotaxin (NPP-2), a metastasis-enhancing motogen, is an angiogenic factor. Cancer Res 61: 6938–6944.PubMedGoogle Scholar
  118. Narita M, Goji J, Nakamura H, Sano K. 1994. Molecular cloning, expression, and localization of a brain-specific phosphodiesterase I/nucleotide pyrophosphatase (PD-I alpha) from rat brain. J Biol Chem 269: 28235–28242.PubMedGoogle Scholar
  119. Newton AC. 1997. Regulation of protein kinase C. Curr Opin Cell Biol 9: 161–167.PubMedGoogle Scholar
  120. Nishimura M, Owens J, Swann JW. 2008. Effects of chronic network hyperexcitability on the growth of hippocampal dendrites. Neurobiol Dis 29: 267-277.Google Scholar
  121. Noguchi K, Ishii S, Shimizu T. 2003. Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278: 25600–25606.PubMedGoogle Scholar
  122. O’Hara L, Han GS, Peak-Chew S, Grimsey N, Carman GM, et al. 2006. Control of phospholipid synthesis by phosphorylation of the yeast lipin Pah1p/Smp2p Mg2+-dependent phosphatidate phosphatase. J Biol Chem 281: 34537–34548.PubMedGoogle Scholar
  123. Peterfy M, Phan J, Xu P, Reue K. 2001. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet 27: 121–124.PubMedGoogle Scholar
  124. Pettus BJ, Bielawski J, Porcelli AM, Reames DL, Johnson KR, et al. 2003b. The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-alpha. Faseb J 17: 1411–1421.PubMedGoogle Scholar
  125. Pettus BJ, Bielawska A, Spiegel S, Roddy P, Hannun YA, et al. 2003a. Ceramide kinase mediates cytokine- and calcium ionophore-induced arachidonic acid release. J Biol Chem 278: 38206–38213.PubMedGoogle Scholar
  126. Pettus BJ, Bielawska A, Subramanian P, Wijesinghe DS, Maceyka M, et al. 2004. Ceramide 1-phosphate is a direct activator of cytosolic phospholipase A2. J Biol Chem 279: 11320–11326.PubMedGoogle Scholar
  127. Pettus BJ, Kitatani K, Chalfant CE, Taha TA, Kawamori T, et al. 2005. The coordination of prostaglandin E2 production by sphingosine-1-phosphate and ceramide-1-phosphate. Mol Pharmacol 68: 330–335.PubMedGoogle Scholar
  128. Phan J, Peterfy M, Reue K. 2004. Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. J Biol Chem 279: 29558–29564.PubMedGoogle Scholar
  129. Phan J, Peterfy M, Reue K. 2005. Biphasic expression of lipin suggests dual roles in adipocyte development. Drug News Perspect 18: 5–11.PubMedGoogle Scholar
  130. Pilquil C, Dewald J, Cherney A, Gorshkova I, Tigyi G, et al. 2006. Lipid phosphate phosphatase-1 regulates lysophosphatidate-induced fibroblast migration by controlling phospholipase D2-dependent phosphatidate generation. J Biol Chem 281: 38418–38429.PubMedGoogle Scholar
  131. Pilquil C, Ling ZC, Singh I, Buri K, Zhang QX, et al. 2001a. Co-ordinate regulation of growth factor receptors and lipid phosphate phosphatase-1 controls cell activation by exogenous lysophosphatidate. Biochem Soc Trans 29: 825–830.PubMedGoogle Scholar
  132. Pilquil C, Singh I, Zhang Q, Ling Z, Buri K, et al. 2001b. Lipid phosphate phosphatase-1 dephosphorylates exogenous lysophosphatidate and thereby attenuates its effects on cell signalling. Prostaglandins 64: 83–92.PubMedGoogle Scholar
  133. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, et al. 1999. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402: 884–888.PubMedGoogle Scholar
  134. Pyne S, Pyne NJ. 2000. Sphingosine 1-phosphate signalling in mammalian cells. Biochem J 349: 385–402.PubMedGoogle Scholar
  135. Radu CG, Yang LV, Riedinger M, Au M, Witte ON. 2004. T cell chemotaxis to lysophosphatidylcholine through the G2A receptor. Proc Natl Acad Sci USA 101: 245–250.PubMedGoogle Scholar
  136. Regier DS, Greene DG, Sergeant S, Jesaitis AJ, McPhail LC. 2000. Phosphorylation of p22phox is mediated by phospholipase D-dependent and -independent mechanisms. Correlation of NADPH oxidase activity and p22phox phosphorylation. J Biol Chem 275: 28406–28412.PubMedGoogle Scholar
  137. Renault AD, Sigal YJ, Morris AJ, Lehmann R. 2004. Soma-germ line competition for lipid phosphate uptake regulates germ cell migration and survival. Science 305: 1963–1966.PubMedGoogle Scholar
  138. Reue K, Donkor J. 2006. Lipin: A determinant of adiposity, insulin sensitivity and energy balance. Future Lipidol 1: 91–101.Google Scholar
  139. Reue K, Xu P, Wang XP, Slavin BG. 2000. Adipose tissue deficiency, glucose intolerance, and increased atherosclerosis result from mutation in the mouse fatty liver dystrophy (fld) gene. J Lipid Res 41: 1067–1076.PubMedGoogle Scholar
  140. Rikitake Y, Hirata K, Yamashita T, Iwai K, Kobayashi S, et al. 2002. Expression of G2A, a receptor for lysophosphatidylcholine, by macrophages in murine, rabbit, and human atherosclerotic plaques. Arterioscler Thromb Vasc Biol 22: 2049–2053.PubMedGoogle Scholar
  141. Rizzo MA, Shome K, Vasudevan C, Stolz DB, Sung TC, et al. 1999. Phospholipase D and its product, phosphatidic acid, mediate agonist-dependent raf-1 translocation to the plasma membrane and the activation of the mitogen-activated protein kinase pathway. J Biol Chem 274: 1131–1139.PubMedGoogle Scholar
  142. Sato K, Malchinkhuu E, Muraki T, Ishikawa K, Hayashi K, et al. 2005. Identification of autotaxin as a neurite retraction-inducing factor of PC12 cells in cerebrospinal fluid and its possible sources. J Neurochem 92: 904–914.PubMedGoogle Scholar
  143. Saulnier-Blache JS. 2004. Lysophosphatidic acid: A “bioactive” phospholipid. Med Sci (Paris) 20: 799–803.Google Scholar
  144. Savaskan NE, Brauer AU, Nitsch R. 2004. Molecular cloning and expression regulation of PRG-3, a new member of the plasticity-related gene family. Eur J Neurosci 19: 212–220.PubMedGoogle Scholar
  145. Savaskan NE, Rocha L, Kotter MR, Baer A, Lubec G, et al. 2007. Autotaxin (NPP-2) in the brain: Cell type-specific expression and regulation during development and after neurotrauma. Cell Mol Life Sci 64: 230–243.PubMedGoogle Scholar
  146. Sayas CL, Avila J, Wandosell F. 2002a. Glycogen synthase kinase-3 is activated in neuronal cells by Galpha12 and Galpha13 by Rho-independent and Rho-dependent mechanisms. J Neurosci 22: 6863–6875.PubMedGoogle Scholar
  147. Sayas CL, Avila J, Wandosell F. 2002b. Regulation of neuronal cytoskeleton by lysophosphatidic acid: Role of GSK-3. Biochim Biophys Acta 1582: 144–153.PubMedGoogle Scholar
  148. Sayas CL, Moreno-Flores MT, Avila J, Wandosell F. 1999. The neurite retraction induced by lysophosphatidic acid increases Alzheimer’s disease-like Tau phosphorylation. J Biol Chem 274: 37046–37052.PubMedGoogle Scholar
  149. Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, et al. 1999. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401: 133–141.PubMedGoogle Scholar
  150. Sciorra VA, Morris AJ. 1999. Sequential actions of phospholipase D and phosphatidic acid phosphohydrolase 2b generate diglyceride in mammalian cells. Mol Biol Cell 10: 3863–3876.PubMedGoogle Scholar
  151. Sciorra VA, Morris AJ. 2002. Roles for lipid phosphate phosphatases in regulation of cellular signaling. Biochim Biophys Acta 1582: 45–51.PubMedGoogle Scholar
  152. Seuwen K, Ludwig MG, Wolf RM. 2006. Receptors for protons or lipid messengers or both? J Recept Signal Transduct Res 26: 599–610.PubMedGoogle Scholar
  153. Shingal R, Scheller RH, Bajjalieh SM. 1993. Ceramide 1-phosphate phosphatase activity in brain. J Neurochem 61: 2279–2285.Google Scholar
  154. Siess W, Tigyi G. 2004. Thrombogenic and atherogenic activities of lysophosphatidic acid. J Cell Biochem 92: 1086–1094.PubMedGoogle Scholar
  155. Sigal YJ, McDermott MI, Morris AJ. 2005. Integral membrane lipid phosphatases/phosphotransferases: Common structure and diverse functions. Biochem J 387: 281–293.PubMedGoogle Scholar
  156. Simon MF, Daviaud D, Pradere JP, Gres S, Guigne C, et al. 2005. Lysophosphatidic acid inhibits adipocyte differentiation via lysophosphatidic acid 1 receptor-dependent down-regulation of peroxisome proliferator-activated receptor gamma2. J Biol Chem 280: 14656–14662.PubMedGoogle Scholar
  157. Simon MF, Rey A, Castan-Laurel I, Gres S, Sibrac D, et al. 2002. Expression of ectolipid phosphate phosphohydrolases in 3T3F442A preadipocytes and adipocytes. Involvement in the control of lysophosphatidic acid production. J Biol Chem 277: 23131–23136.PubMedGoogle Scholar
  158. Smyth SS, Sciorra VA, Sigal YJ, Pamuklar Z, Wang Z, et al. 2003. Lipid phosphate phosphatases regulate lysophosphatidic acid production and signaling in platelets: Studies using chemical inhibitors of lipid phosphate phosphatase activity. J Biol Chem 278: 43214–43223.PubMedGoogle Scholar
  159. Song ZH, Zhong M. 2000. CB1 cannabinoid receptor-mediated cell migration. J Pharmacol Exp Ther 294: 204–209.PubMedGoogle Scholar
  160. Spiegel S, Milstien S. 2003. Exogenous and intracellularly generated sphingosine 1-phosphate can regulate cellular processes by divergent pathways. Biochem Soc Trans 31: 1216–1219.PubMedGoogle Scholar
  161. Starz-Gaiano M, Cho NK, Forbes A, Lehmann R. 2001. Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development 128: 983–991.PubMedGoogle Scholar
  162. Stone JC. 2006. Regulation of Ras in lymphocytes: Get a GRP. Biochem Soc Trans 34: 858–861.PubMedGoogle Scholar
  163. Sugiura T, Waku K. 2000. 2-arachidonoylglycerol: A possible multifunctional lipid mediator in the nervous and immune systems. Ann N Y Acad Sci 905: 344–346.PubMedGoogle Scholar
  164. Suzuki R, Sakagami H, Owada Y, Handa Y, Kondo H. 1999. Localization of mRNA for Dri 42, subtype 2b of phosphatidic acid phosphatase, in the rat brain during development. Brain Res Mol Brain Res 66: 195–199.PubMedGoogle Scholar
  165. Tanaka M, Okudaira S, Kishi Y, Ohkawa R, Iseki S, et al. 2006. Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid. J Biol Chem 281: 25822–25830.PubMedGoogle Scholar
  166. Tanyi JL, Morris AJ, Wolf JK, Fang X, Hasegawa Y, et al. 2003. The human lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis of ovarian cancer cells: Validation of the lysophosphatidic acid signaling cascade as a target for therapy in ovarian cancer. Cancer Res 63: 1073–1082.PubMedGoogle Scholar
  167. Tokumura A, Yamano S, Aono T, Fukuzawa K. 2000. Lysophosphatidic acids produced by lysophospholipase D in mammalian serum and body fluid. Goetzl EJ, Lynch KR, editors. Lysophospholipids and Eicosanoids in Biology and Pathophysiology. New York, NY: Annals of the New York Academy of Sciences; pp. 347–350.Google Scholar
  168. Tomura H, Mogi C, Sato K, Okajima F. 2005. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: A novel type of multi-functional receptors. Cell Signal 17: 1466–1476.PubMedGoogle Scholar
  169. Umezu-Goto M, Kishi Y, Taira A, Hama K, Dohmae N, et al. 2002. Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production. J Cell Biol 158: 227–233.PubMedGoogle Scholar
  170. van Meeteren LA, Ruurs P, Christodoulou E, Goding JW, Takakusa H, et al. 2005. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 280: 21155–21161.PubMedGoogle Scholar
  171. van Meeteren LA, Ruurs P, Stortelers C, Bouwman P, van Rooijen MA, et al. 2006. Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Mol Cell Biol 26: 5015–5022.PubMedGoogle Scholar
  172. Vining EP. 1999. Clinical efficacy of the ketogenic diet. Epilepsy Res 37: 181–190.PubMedGoogle Scholar
  173. Wang WZ, Molnar Z. 2005. Dynamic pattern of mRNA expression of plasticity-related gene-3 (PRG-3) in the mouse cerebral cortex during development. Brain Res Bull 66: 454–460.PubMedGoogle Scholar
  174. Wang L, Cummings R, Zhao Y, Kazlauskas A, Sham JK, et al. 2003. Involvement of phospholipase D2 in lysophosphatidate-induced transactivation of platelet-derived growth factor receptor-beta in human bronchial epithelial cells. J Biol Chem 278: 39931–39940.PubMedGoogle Scholar
  175. Weigert R, Silletta MG, Spano S, Turacchio G, Cericola C, et al. 1999. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 402: 429–433.PubMedGoogle Scholar
  176. Weiner JA, Chun J. 1999. Schwann cell survival mediated by the signaling phospholipid lysophosphatidic acid. Proc Natl Acad Sci USA 96: 5233–5238.PubMedGoogle Scholar
  177. Weiner JA, Hecht JH, Chun J. 1998. Lysophosphatidic acid receptor gene vzg-1/lpA1/edg-2 is expressed by mature oligodendrocytes during myelination in the postnatal murine brain. J Comp Neurol 398: 587–598.PubMedGoogle Scholar
  178. Weiner JA, Fukushima N, Contos JJ, Scherer SS, Chun J. 2001. Regulation of Schwann cell morphology and adhesion by receptor-mediated lysophosphatidic acid signaling. J Neurosci 21: 7069–7078.PubMedGoogle Scholar
  179. Witte ON, Kabarowski JH, Xu Y, Le LQ, Zhu K. 2005. Retraction. Science 307: 206.PubMedGoogle Scholar
  180. Wu J, Cunnick JM. 2002. Trans-regulation of epidermal growth factor receptor by lysophosphatidic acid and G protein-coupled receptors. Biochim Biophys Acta 1582: 100–106.PubMedGoogle Scholar
  181. Yart A, Chap H, Raynal P. 2002. Phosphoinositide 3-kinases in lysophosphatidic acid signaling: Regulation and cross-talk with the Ras/mitogen-activated protein kinase pathway. Biochim Biophys Acta 1582: 107–111.PubMedGoogle Scholar
  182. Ye X, Hama K, Contos JJ, Anliker B, Inoue A, et al. 2005. LPA3-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435: 104–108.PubMedGoogle Scholar
  183. Yegin A, Akbas SH, Ozben T, Korgun DK. 2002. Secretory phospholipase A2 and phospholipids in neural membranes in an experimental epilepsy model. Acta Neurol Scand 106: 258–262.PubMedGoogle Scholar
  184. Zhang C, Baker DL, Yasuda S, Makarova N, Balazs L, et al. 2004. Lysophosphatidic acid induces neointima formation through PPARgamma activation. J Exp Med 199: 763–774.PubMedGoogle Scholar
  185. Zhang QX, Pilquil CS, Dewald J, Berthiaume LG, Brindley DN. 2000. Identification of structurally important domains of lipid phosphate phosphatase-1: Implications for its sites of action. Biochem J 345(Pt 2): 181–184.PubMedGoogle Scholar
  186. Zhang N, Zhang J, Purcell KJ, Cheng Y, Howard K. 1997. The Drosophila protein Wunen repels migrating germ cells. Nature 385: 64–67.PubMedGoogle Scholar
  187. Zhao Y, Kalari SK, Usatyuk PV, Gorshkova I, He D, et al. 2007. Intracellular generation of sphingosine 1-phosphate in human lung endothelial cells: Role of lipid phosphate phosphatase-1 and sphingosine kinase 1. J Biol Chem 282: 14165–14177.PubMedGoogle Scholar
  188. Zhao Y, Usatyuk PV, Cummings R, Saatian B, He D, et al. 2005. Lipid phosphate phosphatase-1 regulates lysophosphatidic acid-induced calcium release, NF-kappaB activation and interleukin-8 secretion in human bronchial epithelial cells. Biochem J 385: 493–502.PubMedGoogle Scholar
  189. Zhu K, Baudhuin LM, Hong G, Williams FS, Cristina KL, et al. 2001. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J Biol Chem 276: 41325–41335.PubMedGoogle Scholar
  190. Zimmerberg J. 2000. Are the curves in all the right places? Traffic 1: 366–368.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • D. N. Brindley
  • A. U. Bräuer

There are no affiliations available

Personalised recommendations