Advertisement

The Phosphoinositides

  • G. D’Angelo
  • M. Vicinanza
  • A. Di Campli
  • M. A. De Matteis
Reference work entry

Abstract:

Phosphatidylinositol (PtdIns) is a membrane phospholipid that comprises the polar myo-inositol hexahydroxycyclohexane headgroup attached via a phosphoester bond to sn-1,2-diacylgycerol 3-phosphate. The phosphoinositides are derivatives of PtdIns in which one or more of the −OH groups on the inositol ring have undergone esterification with a phosphate group. In many cell lines and tissues, the phosphoinositides represent up to 15% of the total cellular phospholipids, and they show remarkable differences in concentrations among their diverse species (ranging from around 10% of total phospholipids for PtdIns, to trace amounts of PtdIns(3,4,5)P 3). In the central nervous system, the phosphoinositides account for less than 4% of the total phospholipids (less than 1% dry weight in gray matter). Nevertheless, the phosphoinositides have emerged as key regulators of a plethora of biological functions, including synaptic transmission. The importance of this class of lipids is underlined by the finding that genetic impairments in phosphoinositide metabolism produce serious health disorders that often involve the nervous system.

Keywords

Phosphatidic Acid Golgi Complex Inositol Phosphate Endocytic Compartment Inositol Phospholipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank C. P. Berrie for editorial assistance; and E. Fontana for artwork. The authors acknowledge the support of Telethon and AIRC.

References

  1. Aikawa Y, Martin TF. 2003. ARF6 regulates a plasma membrane pool of phosphatidylinositol(4,5)bisphosphate required for regulated exocytosis. J Cell Biol 162: 647–659.PubMedGoogle Scholar
  2. Aikawa Y, Kuraoka A, Kondo H, Kawabuchi M, Watanabe T. 1999. Involvement of PITPnm, a mammalian homologue of Drosophila rdgB, in phosphoinositide synthesis on Golgi membranes. J Biol Chem 274: 20569–20577.PubMedGoogle Scholar
  3. Anderson RA, Boronenkov IV, Doughman SD, Kunz J, Loijens JC. 1999. Phosphatidylinositol phosphate kinases, a multifaceted family of signaling enzymes. J Biol Chem 274: 9907–9910.PubMedGoogle Scholar
  4. Antonsson B. 1997. Phosphatidylinositol synthase from mammalian tissues. Biochim Biophys Acta 1348: 179–186.PubMedGoogle Scholar
  5. Astle MV, Horan KA, Ooms LM, Mitchell CA. 2007. The inositol polyphosphate 5-phosphatases: Traffic controllers, waistline watchers and tumour suppressors? Biochem Soc Symp 161-181.Google Scholar
  6. Audhya A, Emr SD. 2002. Stt4 PI 4-kinase localizes to the plasma membrane and functions in the Pkc1-mediated MAP kinase cascade. Dev Cell 2: 593–605.PubMedGoogle Scholar
  7. Audhya A, Foti M, Emr SD. 2000. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth, and organelle membrane dynamics. Mol Biol Cell 11: 2673–2689.PubMedGoogle Scholar
  8. Bache KG, Brech A, Mehlum A, Stenmark H. 2003. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 162: 435–442.PubMedGoogle Scholar
  9. Balla A, Balla T. 2006. Phosphatidylinositol 4-kinases: Old enzymes with emerging functions. Trends Cell Biol 16: 351–361.PubMedGoogle Scholar
  10. Balla A, Tuymetova G, Tsiomenko A, Varnai P, Balla T. 2005. A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: Studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell 16: 1282–1295.PubMedGoogle Scholar
  11. Behnia R, Munro S. 2005. Organelle identity and the signposts for membrane traffic. Nature 38: 597–604.Google Scholar
  12. Berridge MJ, Irvine RF. 1984. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.PubMedGoogle Scholar
  13. Berridge MJ, Irvine RF. 1989. Inositol phosphates and cell signalling. Nature 341: 197–205.PubMedGoogle Scholar
  14. Bruns JR, Ellis MA, Jeromin A, Weisz OA. 2002. Multiple roles for phosphatidylinositol 4-kinase in biosynthetic transport in polarized Madin-Darby canine kidney cells. J Biol Chem 277: 2012–2018.PubMedGoogle Scholar
  15. Cao C, Laporte J, Backer JM, Wandinger-Ness A, Stein MP. 2007. Myotubularin lipid phosphatase binds the hVPS15/hVPS34 lipid kinase complex on endosomes. Traffic 8: 1052–1067.PubMedGoogle Scholar
  16. Castellino AM, Parker GJ, Boronenkov IV, Anderson RA, Chao MV. 1997. A novel interaction between the juxtamembrane region of the p55 tumor necrosis factor receptor and phosphatidylinositol-4-phosphate 5-kinase. J Biol Chem 272: 5861–5870.PubMedGoogle Scholar
  17. Chikhale EG, Balbo A, Galdzicki Z, Rapoport SI, Shetty HU. 2001. Measurement of myo-inositol turnover in phosphatidylinositol: Description of a model and mass spectrometric method for cultured cortical neurons. Biochemistry 40: 11114–11120.PubMedGoogle Scholar
  18. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, et al. 2005. Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16: 3467–3479.PubMedGoogle Scholar
  19. Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, et al. 2007. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448: 68–72.PubMedGoogle Scholar
  20. Christoforidis S, Zerial M. 2001. Purification of EEA1 from bovine brain cytosol using Rab5 affinity chromatography and activity assays. Methods Enzymol 329: 120–132.PubMedGoogle Scholar
  21. Clarke JH, Richardson JP, Hinchliffe KA, Irvine RF. 2007. Type II PtdInsP kinases: Location, regulation and function. Biochem Soc Symp 149-159.Google Scholar
  22. Cockcroft S. 2007. Trafficking of phosphatidylinositol by phosphatidylinositol transfer proteins. Biochem Soc Symp 259-271.Google Scholar
  23. Cockcroft S, De Matteis MA. 2001. Inositol lipids as spatial regulators of membrane traffic. J Membr Biol 180: 187–194.PubMedGoogle Scholar
  24. Coronas S, Ramel D, Pendaries C, Gaits-Iacovoni F, Tronchere H, et al. 2007. PtdIns5P: A little phosphoinositide with big functions?. Biochem Soc Symp 117-128.Google Scholar
  25. Crljen V, Volinia S, Banfic H. 2002. Hepatocyte growth factor activates phosphoinositide 3-kinase C2 beta in renal brush-border plasma membranes. Biochem J 365: 791–799.PubMedGoogle Scholar
  26. D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, et al. 2007. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449: 62–67.PubMedGoogle Scholar
  27. de Graaf P, Klapisz EE, Schulz TK, Cremers AF, Verkleij AJ, et al. 2002. Nuclear localization of phosphatidylinositol 4-kinase beta. J Cell Sci 115: 1769–1775.PubMedGoogle Scholar
  28. de Graaf P, Zwart WT, van Dijken RA, Deneka M, Schulz TK, et al. 2004. Phosphatidylinositol 4-kinasebeta is critical for functional association of rab11 with the Golgi complex. Mol Biol Cell 15: 2038–2047.PubMedGoogle Scholar
  29. De Matteis MA, Morrow JS. 1998. The role of ankyrin and spectrin in membrane transport and domain formation. Curr Opin Cell Biol 10: 542–549.PubMedGoogle Scholar
  30. De Matteis MA, Godi A. 2004. PI-loting membrane traffic. Nat Cell Biol 6: 487–492.PubMedGoogle Scholar
  31. De Matteis MA, D'Angelo G. 2007. The role of the phosphoinositides at the Golgi complex. Biochem Soc Symp 107-116.Google Scholar
  32. De Smedt F, Boom A, Pesesse X, Schiffmann SN, Erneux C. 1996. Post-translational modification of human brain type I inositol-1,4,5-trisphosphate 5-phosphatase by farnesylation. J Biol Chem 271: 10419–10424.PubMedGoogle Scholar
  33. De Smedt F, Missiaen L, Parys JB, Vanweyenberg V, De Smedt H, et al. 1997. Isoprenylated human brain type I inositol 1,4,5-trisphosphate 5-phosphatase controls Ca2+ oscillations induced by ATP in Chinese hamster ovary cells. J Biol Chem 272: 17367–17375.PubMedGoogle Scholar
  34. Downes CP, Perera N, Ross S, Leslie NR. 2007. Substrate specificity and acute regulation of the tumour suppressor phosphatase, PTEN. Biochem Soc Symp 69-80.Google Scholar
  35. Duex JE, Tang F, Weisman LS. 2006. The Vac14p-Fig4p complex acts independently of Vac7p and couples PI3,5P2 synthesis and turnover. J Cell Biol 172: 693–704.PubMedGoogle Scholar
  36. Dyson JM, O'Malley CJ, Becanovic J, Munday AD, Berndt MC, et al. 2001. The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J Cell Biol 155: 1065–1079.PubMedGoogle Scholar
  37. Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, et al. 2007. A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13: 377–390.PubMedGoogle Scholar
  38. Falasca M, Hughes WE, Dominguez V, Sala G, Fostira F, et al. 2007. The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 282: 28226–28236.PubMedGoogle Scholar
  39. Faulhammer F, Kanjilal-Kolar S, Knodler A, Lo J, Lee Y, et al. 2007. Growth control of Golgi phosphoinositides by reciprocal localization of sac1 lipid phosphatase and pik1 4-kinase. Traffic 8: 1554–1567.PubMedGoogle Scholar
  40. Foti M, Audhya A, Emr SD. 2001. Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12: 2396–2411.PubMedGoogle Scholar
  41. Fruman DA, Meyers RE, Cantley LC. 1998. Phosphoinositide kinases. Annu Rev Biochem 67: 481–507.PubMedGoogle Scholar
  42. Fugmann T, Hausser A, Schoffler P, Schmid S, Pfizenmaier K, et al. 2007. Regulation of secretory transport by protein kinase D-mediated phosphorylation of the ceramide transfer protein. J Cell Biol 178: 15–22.PubMedGoogle Scholar
  43. Futter CE, Collinson LM, Backer JM, Hopkins CR. 2001. Human VPS34 is required for internal vesicle formation within multivesicular endosomes. J Cell Biol 155: 1251–1264.PubMedGoogle Scholar
  44. Gaidarov I, Zhao Y, Keen JH. 2005. Individual phosphoinositide 3-kinase C2alpha domain activities independently regulate clathrin function. J Biol Chem 280: 40766–40772.PubMedGoogle Scholar
  45. Gaidarov I, Smith ME, Domin J, Keen JH. 2001. The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. Mol Cell 7: 443–449.PubMedGoogle Scholar
  46. Gardocki ME, Jani N, Lopes JM. 2005. Phosphatidylinositol biosynthesis: Biochemistry and regulation. Biochim Biophys Acta 1735: 89–100.PubMedGoogle Scholar
  47. Gehrmann T, Heilmeyer LM, Jr. 1998. Phosphatidylinositol 4-kinases. Eur J Biochem 253: 357–370.PubMedGoogle Scholar
  48. Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, et al. 2000. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19: 4577–4588.PubMedGoogle Scholar
  49. Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, et al. 1999. ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1: 280–287.PubMedGoogle Scholar
  50. Godi A, Di Campli A, Konstantakopoulos A, Di Tullio G, Alessi DR, et al. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat Cell Biol 6: 393-404.Google Scholar
  51. Godi A, Santone I, Pertile P, Devarajan P, Stabach PR, et al. 1998. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc Natl Acad Sci USA 95: 8607–8612.PubMedGoogle Scholar
  52. Guipponi M, Tapparel C, Jousson O, Scamuffa N, Mas C, et al. 2001. The murine orthologue of the Golgi-localized TPTE protein provides clues to the evolutionary history of the human TPTE gene family. Hum Genet 109: 569–575.PubMedGoogle Scholar
  53. Guo S, Stolz LE, Lemrow SM, York JD. 1999. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 274: 12990–12995.PubMedGoogle Scholar
  54. Gurung R, Tan A, Ooms LM, McGrath MJ, Huysmans RD, et al. 2003. Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization. The inositol 5-phosphatase skip localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation. J Biol Chem 278: 11376–11385.PubMedGoogle Scholar
  55. Halter D, Neumann S, van Dijk SM, Wolthoorn J, de Maziere AM, et al. 2007. Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J Cell Biol 179: 101–115.PubMedGoogle Scholar
  56. Hama H, Schnieders EA, Thorner J, Takemoto JY, DeWald DB. 1999. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 274: 34294–34300.PubMedGoogle Scholar
  57. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M, et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426: 803–809.PubMedGoogle Scholar
  58. Hausser A, Link G, Hoene M, Russo C, Selchow O, et al. 2006. Phospho-specific binding of 14–3–3 proteins to phosphatidylinositol 4-kinase III beta protects from dephosphorylation and stabilizes lipid kinase activity. J Cell Sci 119: 3613–3621.PubMedGoogle Scholar
  59. Hawkins PT, Anderson KE, Davidson K, Stephens LR. 2006. Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 34: 647–662.PubMedGoogle Scholar
  60. Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, et al. 1995. ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature 374: 173–177.PubMedGoogle Scholar
  61. Hayes S, Chawla A, Corvera S. 2002. TGF beta receptor internalization into EEA1-enriched early endosomes: Role in signaling to Smad2. J Cell Biol 158: 1239–1249.PubMedGoogle Scholar
  62. Heilmeyer LM, Jr., Vereb G, Jr., Vereb G, Kakuk A, Szivak I. 2003. Mammalian phosphatidylinositol 4-kinases. IUBMB Life 55: 59–65.PubMedGoogle Scholar
  63. Hendricks KB, Wang BQ, Schnieders EA, Thorner J. 1999. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat Cell Biol 1: 234–241.PubMedGoogle Scholar
  64. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, et al. 1999. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99: 521–532.PubMedGoogle Scholar
  65. Horan KA, Watanabe KI, Kong AM, Bailey CG, Rasko JE, et al. 2007. Regulation of Fc{gamma}R-stimulated phagocytosis by the 72 kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72 kDa 5-phosphatase, regulates complement receptor-3-mediated phagocytosis, by differential recruitment of these 5-phosphatases to the phagocytic cup. Blood 110: 4480-4491Google Scholar
  66. Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, et al. 2000. Identification and characterization of a novel inositol polyphosphate 5-phosphatase. J Biol Chem 275: 10870–10875.PubMedGoogle Scholar
  67. Ikonomov OC, Sbrissa D, Foti M, Carpentier JL, Shisheva A. 2003. PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 14: 4581–4591.PubMedGoogle Scholar
  68. Ikonomov OC, Sbrissa D, Mlak K, Kanzaki M, Pessin J, et al. 2002. Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5-P2 production for endomembrane integrity. J Biol Chem 277: 9206–9211.PubMedGoogle Scholar
  69. Janne PA, Suchy SF, Bernard D, MacDonald M, Crawley J, et al. 1998. Functional overlap between murine Inpp5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J Clin Invest 101: 2042–2053.PubMedGoogle Scholar
  70. Jenkins GH, Fisette PL, Anderson RA. 1994. Type I phosphatidylinositol 4-phosphate 5-kinase isoforms are specifically stimulated by phosphatidic acid. J Biol Chem 269: 11547–11554.PubMedGoogle Scholar
  71. Johnson EE, Overmeyer JH, Gunning WT, Maltese WA. 2006. Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. J Cell Sci 119: 1219–1232.PubMedGoogle Scholar
  72. Kaplan DR, Whitman M, Schaffhausen B, Pallas DC, White M, et al. 1987. Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity. Cell 50: 1021–1029.PubMedGoogle Scholar
  73. Kato M, Dobyns WB. 2003. Lissencephaly and the molecular basis of neuronal migration. Hum Mol Genet 12: R89–96.PubMedGoogle Scholar
  74. Katso RM, Pardo OE, Palamidessi A, Franz CM, Marinov M, et al. 2006. Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 17: 3729–3744.PubMedGoogle Scholar
  75. Kihara A, Noda T, Ishihara N, Ohsumi Y. 2001. Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152: 519–530.PubMedGoogle Scholar
  76. Kim SA, Taylor GS, Torgersen KM, Dixon JE. 2002. Myotubularin and MTMR2, phosphatidylinositol 3-phosphatases mutated in myotubular myopathy and type 4B Charcot-Marie-Tooth disease. J Biol Chem 277: 4526–4531.PubMedGoogle Scholar
  77. Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE. 2003. Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci USA 100: 4492–4497.PubMedGoogle Scholar
  78. Kisseleva MV, Cao L, Majerus PW. 2002. Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits Akt/protein kinase B phosphorylation and leads to apoptotic cell death. J Biol Chem 277: 6266–6272.PubMedGoogle Scholar
  79. Lloyd TE, Atkinson R, Wu MN, Zhou Y, Pennetta G, et al. 2002. Hrs regulates endosome membrane invagination and tyrosine kinase receptor signaling in Drosophila. Cell 108: 261–269.PubMedGoogle Scholar
  80. Loijens JC, Boronenkov IV, Parker GJ, Anderson RA. 1996. The phosphatidylinositol 4-phosphate 5-kinase family. Adv Enzyme Regul 36: 115–140.PubMedGoogle Scholar
  81. Lowe C. 2005. Oculocerebral syndrome of Lowe. J Glaucoma 14: 179–180.PubMedGoogle Scholar
  82. Macara IG, Marinetti GV, Balduzzi PC. 1984. Transforming protein of avian sarcoma virus UR2 is associated with phosphatidylinositol kinase activity: Possible role in tumorigenesis. Proc Natl Acad Sci USA 81: 2728–2732.PubMedGoogle Scholar
  83. Maehama T, Taylor GS, Dixon JE. 2001. PTEN and myotubularin: Novel phosphoinositide phosphatases. Annu Rev Biochem 70: 247–279.PubMedGoogle Scholar
  84. Maffucci T, Cooke FT, Foster FM, Traer CJ, Fry MJ, et al. 2005. Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol 169: 789–799.PubMedGoogle Scholar
  85. Malecz N, McCabe PC, Spaargaren C, Qiu R, Chuang Y, et al. 2000. Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr Biol 10: 1383–1386.PubMedGoogle Scholar
  86. Mayinger P, Bankaitis VA, Meyer DI. 1995. Sac1p mediates the adenosine triphosphate transport into yeast endoplasmic reticulum that is required for protein translocation. J Cell Biol 131: 1377–1386.PubMedGoogle Scholar
  87. McLaughlin S, Murray D. 2005. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438: 605–611.PubMedGoogle Scholar
  88. McPherson PS, Czernik AJ, Chilcote TJ, Onofri F, Benfenati F, et al. 1994. Interaction of Grb2 via its Src homology 3 domains with synaptic proteins including synapsin I. Proc Natl Acad Sci USA 91: 6486–6490.PubMedGoogle Scholar
  89. McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, et al. 1996. A presynaptic inositol-5-phosphatase. Nature 379: 353–357.PubMedGoogle Scholar
  90. Merlot S, Meili R, Pagliarini DJ, Maehama T, Dixon JE, et al. 2003. A PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi. J Biol Chem 278: 39866–39873.PubMedGoogle Scholar
  91. Meunier FA, Osborne SL, Hammond GR, Cooke FT, Parker PJ, et al. 2005. Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16: 4841–4851.PubMedGoogle Scholar
  92. Michell RH. 1975. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta 415: 81–47.PubMedGoogle Scholar
  93. Minagawa T, Ijuin T, Mochizuki Y, Takenawa T. 2001. Identification and characterization of a sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem 276: 22011–22015.PubMedGoogle Scholar
  94. Miura S, Takeshita T, Asao H, Kimura Y, Murata K, et al. 2000. Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA. Mol Cell Biol 20: 9346–9355.PubMedGoogle Scholar
  95. Mochizuki Y, Takenawa T. 1999. Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles. J Biol Chem 274: 36790–36795.PubMedGoogle Scholar
  96. Moritz A, De Graan PN, Gispen WH, Wirtz KW. 1992. Phosphatidic acid is a specific activator of phosphatidylinositol-4-phosphate kinase. J Biol Chem 267: 7207–7210.PubMedGoogle Scholar
  97. Nakagawa T, Goto K, Kondo H. 1996. Cloning, expression, and localization of 230-kDa phosphatidylinositol 4-kinase. J Biol Chem 271: 12088–12094.PubMedGoogle Scholar
  98. Nandurkar HH, Layton M, Laporte J, Selan C, Corcoran L, et al. 2003. Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP. Proc Natl Acad Sci USA 100: 8660–8665.PubMedGoogle Scholar
  99. Nemoto Y, Wenk MR, Watanabe M, Daniell L, Murakami T, et al. 2001. Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem 276: 41133–41142.PubMedGoogle Scholar
  100. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, et al. 2000. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 151: 601–612.PubMedGoogle Scholar
  101. Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, et al. 2007. Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9: 36–44.PubMedGoogle Scholar
  102. Odorizzi G, Babst M, Emr SD. 1998. Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95: 847–858.PubMedGoogle Scholar
  103. Ooms LM, Fedele CG, Astle MV, Ivetac I, Cheung V, et al. 2006. The inositol polyphosphate 5-phosphatase, PIPP, Is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation. Mol Biol Cell 17: 607–622.PubMedGoogle Scholar
  104. Pike LJ. 1992. Phosphatidylinositol 4-kinases and the role of polyphosphoinositides in cellular regulation. Endocr Rev 13: 692–706.PubMedGoogle Scholar
  105. Prasad N, Topping RS, Decker SJ. 2001. SH2-containing inositol 5′-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol Cell Biol 21: 1416–1428.PubMedGoogle Scholar
  106. Rameh LE, Tolias KF, Duckworth BC, Cantley LC. 1997. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390: 192–196.PubMedGoogle Scholar
  107. Robinson FL, Dixon JE. 2006. Myotubularin phosphatases: Policing 3-phosphoinositides. Trends Cell Biol 16: 403–412.PubMedGoogle Scholar
  108. Rohde HM, Cheong FY, Konrad G, Paiha K, Mayinger P, et al. 2003. The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem 278: 52689–52699.PubMedGoogle Scholar
  109. Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, et al. 2000. Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10: 311–320.PubMedGoogle Scholar
  110. Rusk N, Le PU, Mariggio S, Guay G, Lurisci C, et al. 2003. Synaptojanin 2 functions at an early step of clathrin-mediated endocytosis. Curr Biol 13: 659–663.PubMedGoogle Scholar
  111. Sbrissa D, Ikonomov OC, Shisheva A. 1999. PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 274: 21589–21597.PubMedGoogle Scholar
  112. Sbrissa D, Ikonomov OC, Shisheva A. 2002. Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomenbrane localization. J Biol Chem 277: 6073–6079.PubMedGoogle Scholar
  113. Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R. 2004. Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett 576: 9–13.PubMedGoogle Scholar
  114. Sciorra VA, Audhya A, Parsons AB, Segev N, Boone C, et al. 2005. Synthetic genetic array analysis of the PtdIns 4-kinase Pik1p identifies components in a Golgi-specific Ypt31/rab-GTPase signaling pathway. Mol Biol Cell 16: 776–793.PubMedGoogle Scholar
  115. Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, et al. 2005. An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170: 607–618.PubMedGoogle Scholar
  116. Siddhanta A, Backer JM, Shields D. 2000. Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J Biol Chem 275: 12023–12031.PubMedGoogle Scholar
  117. Siddhanta A, Radulescu A, Stankewich MC, Morrow JS, Shields D. 2003. Fragmentation of the Golgi apparatus. A role for beta III spectrin and synthesis of phosphatidylinositol 4,5-bisphosphate. J Biol Chem 278: 1957–1965.PubMedGoogle Scholar
  118. Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, et al. 1998. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394: 494–498.PubMedGoogle Scholar
  119. Speed CJ, Little PJ, Hayman JA, Mitchell CA. 1996. Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation. EMBO J 15: 4852–4861.PubMedGoogle Scholar
  120. Speed CJ, Neylon CB, Little PJ, Mitchell CA. 1999. Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with spontaneous calcium oscillations and enhanced calcium responses following endothelin-1 stimulation. J Cell Sci 112: 669–679.PubMedGoogle Scholar
  121. Stack JH, DeWald DB, Takegawa K, Emr SD. 1995. Vesicle-mediated protein transport: Regulatory interactions between the Vps15 protein kinase and the Vps34 PtdIns 3-kinase essential for protein sorting to the vacuole in yeast. J Cell Biol 129: 321–334.PubMedGoogle Scholar
  122. Stamnes M. 2002. Regulating the actin cytoskeleton during vesicular transport. Curr Opin Cell Biol 14: 428–433.PubMedGoogle Scholar
  123. Stephens LR, Hughes KT, Irvine RF. 1991. Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351: 33–39.PubMedGoogle Scholar
  124. Strahl T, Thorner J. 2007. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim Biophys Acta 1771: 353–404.PubMedGoogle Scholar
  125. Sugimoto Y, Whitman M, Cantley LC, Erikson RL. 1984. Evidence that the Rous sarcoma virus transforming gene product phosphorylates phosphatidylinositol and diacylglycerol. Proc Natl Acad Sci USA 81: 2117–2121.PubMedGoogle Scholar
  126. Suire S, Coadwell J, Ferguson GJ, Davidson K, Hawkins P, et al. 2005. p84, a new Gbetagamma-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110gamma. Curr Biol 15: 566–570.PubMedGoogle Scholar
  127. Sweeney DA, Siddhanta A, Shields D. 2002. Fragmentation and re-assembly of the Golgi apparatus in vitro. A requirement for phosphatidic acid and phosphatidylinositol 4,5-bisphosphate synthesis. J Biol Chem 277: 3030–3039.PubMedGoogle Scholar
  128. Tahirovic S, Schorr M, Mayinger P. 2005. Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic 6: 116–130.PubMedGoogle Scholar
  129. Takegawa K, DeWald DB, Emr SD. 1995. Schizosaccharomyces pombe Vps34p, a phosphatidylinositol-specific PI 3-kinase essential for normal cell growth and vacuole morphology. J Cell Sci 108: 3745–3756.PubMedGoogle Scholar
  130. Tolias K, Carpenter CL. 2000. In vitro interaction of phosphoinositide-4-phosphate 5-kinases with Rac. Methods Enzymol 325: 190–200.PubMedGoogle Scholar
  131. Tolias KF, Rameh LE, Ishihara H, Shibasaki Y, Chen J, et al. 1998. Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J Biol Chem 273: 18040–18046.PubMedGoogle Scholar
  132. Toth B, Balla A, Ma H, Knight ZA, Shokat KM, et al. 2006. Phosphatidylinositol 4-kinase IIIbeta regulates the transport of ceramide between the endoplasmic reticulum and Golgi. J Biol Chem 281: 36369–36377.PubMedGoogle Scholar
  133. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. 1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFbeta receptor. Cell 95: 779–791.PubMedGoogle Scholar
  134. Ungewickell A, Ward ME, Ungewickell E, Majerus PW. 2004. The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci USA 101: 13501–13506.PubMedGoogle Scholar
  135. Ungewickell A, Hugge C, Kisseleva M, Chang SC, Zou J, et al. 2005. The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc Natl Acad Sci USA 102: 18854–18859.PubMedGoogle Scholar
  136. Vieira OV, Verkade P, Manninen A, Simons K. 2005. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J Cell Biol 170: 521–526.PubMedGoogle Scholar
  137. Voigt P, Dorner MB, Schaefer M. 2006. Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase gamma that is highly expressed in heart and interacts with PDE3B. J Biol Chem 281: 9977–9986.PubMedGoogle Scholar
  138. Walch-Solimena C, Novick P. 1999. The yeast phosphatidylinositol-4-OH kinase pik1 regulates secretion at the Golgi. Nat Cell Biol 1: 523–525.PubMedGoogle Scholar
  139. Walker SM, Downes CP, Leslie NR. 2001. TPIP: A novel phosphoinositide 3-phosphatase. Biochem J 360: 277–283.PubMedGoogle Scholar
  140. Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H, et al. 2007. PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell 18: 2646–2655.PubMedGoogle Scholar
  141. Wang Y, Yoshioka K, Azam MA, Takuwa N, Sakurada S, et al. 2006. Class II phosphoinositide 3-kinase alpha-isoform regulates Rho, myosin phosphatase and contraction in vascular smooth muscle. Biochem J 394: 581–592.PubMedGoogle Scholar
  142. Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, et al. 2003. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114: 299–310.PubMedGoogle Scholar
  143. Whiteford CC, Brearley CA, Ulug ET. 1997. Phosphatidylinositol 3,5-bisphosphate defines a novel PI 3-kinase pathway in resting mouse fibroblasts. Biochem J 323: 597–601.PubMedGoogle Scholar
  144. Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. 1985. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315: 239–242.PubMedGoogle Scholar
  145. Whitters EA, Cleves AE, McGee TP, Skinner HB, Bankaitis VA. 1993. SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol 122: 79–94.PubMedGoogle Scholar
  146. Williams C, Choudhury R, McKenzie E, Lowe M. 2007. Targeting of the type II inositol polyphosphate 5-phosphatase INPP5B to the early secretory pathway. J Cell Sci 120: 3941–3951.PubMedGoogle Scholar
  147. Wishart MJ, Taylor GS, Slama JT, Dixon JE. 2001. PTEN and myotubularin phosphoinositide phosphatases: Bringing bioinformatics to the lab bench. Curr Opin Cell Biol 13: 172–181.PubMedGoogle Scholar
  148. Wong K, Meyers dd R, Cantley LC. 1997. Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272: 13236–13241.PubMedGoogle Scholar
  149. Zerial M, McBride H. 2001. Rab proteins as membrane organizers. Nat Rev Mol Cell Biol 2: 107–117.PubMedGoogle Scholar
  150. Zhao X, Varnai P, Tuymetova G, Balla A, Toth ZE, et al. 2001. Interaction of neuronal calcium sensor-1 (NCS-1) with phosphatidylinositol 4-kinase beta stimulates lipid kinase activity and affects membrane trafficking in COS-7 cells. J Biol Chem 276: 40183–40189.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • G. D’Angelo
  • M. Vicinanza
  • A. Di Campli
  • M. A. De Matteis

There are no affiliations available

Personalised recommendations