Laser Speckle Imaging of Cerebral Blood Flow

  • Qingming Luo
  • Haiying Cheng
  • Zheng Wang
  • Valery V. Tuchin
Reference work entry


Monitoring the spatio-temporal characteristics of cerebral blood flow (CBF) is crucial for studying the normal and pathophysiologic conditions of brain metabolism. By illuminating the cortex with laser light and imaging the resulting speckle pattern, relative CBF images with tens of microns spatial and millisecond temporal resolution could be obtained. In this chapter, a laser speckle imaging (LSI) method for monitoring dynamic, high-resolution CBF is introduced. Its applications on detecting the change in local CBF induced by sensory stimulation and the influence of a chemical agent to CBF are given. To improve the spatial resolution of current LSI, a modified LSI method is proposed. Dynamic of CBF under different temperatures is investigated by both methods and their results are compared with each other.

Key words

laser speckle imaging cerebral blood flow spatio-temporal characteristics 

References to Laser Speckle Imaging of Cerebral Blood Flow

  1. K. U. Frerichs and G. Z. Feuerstein, “Laser Doppler flowmetry: a review of its application for measuring cerebral and spinal cord blood flow,” Mol. Chem. Neuropathology 12, 55–61 (1990).CrossRefGoogle Scholar
  2. U. Dirnagl, B. Kaplan, M. Jacewicz, and W. Pulsinelli, “Continuous measurement of cerebral cortical blood flow by laser-Doppler flowmetry in a rat stroke model,” J. Cereb. Blood Flow Metab. 9, 589–596 (1989).CrossRefGoogle Scholar
  3. B. M. Ances, J. H. Greenberg, and J. A. Detre, “Laser Doppler imaging of activation-flow coupling in the rat somatosensory cortex,” Neuroimage 10, 716–723 (1999).CrossRefGoogle Scholar
  4. M. Lauritzen and M. Fabricius, “Real time laser-Doppler perfusion imaging of cortical spreading depression in rat neocortex,” Neuroreport 6, 1271–1273 (1995).CrossRefGoogle Scholar
  5. D. A. Zimnyakov, J. D. Briers, and V. V. Tuchin, “Speckle technologies for monitoring and imaging of tissues and tissuelike phantoms” in Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin ed. (SPIE Press, Bellingham, 2002), 987–1036.Google Scholar
  6. D. A. Zimnyakov and V. V. Tuchin, “Laser tomography” in: Medical Applications of Lasers, D. R. Vij and K. Mahesh eds. (Kluwer Academic Publishers, Boston, 2002), 147–194.CrossRefGoogle Scholar
  7. E. I. Galanzha, G. E. Brill, Y. Aizu, S. S. Ulyanov, and V. V. Tuchin, “Speckle and Doppler methods of blood and lymph flow monitoring” in Handbook of Optical Biomedical Diagnostics, PM107, V. V. Tuchin ed. (SPIE Press, Bellingham, 2002), 881–937.Google Scholar
  8. R. Bullock, P. Statham, J. Patterson, D. Wyper, D. Hadley, and E. Teasdale, “The time course of vasogenic oedema after focal human head injury-evidence from SPECT mapping of blood brain barrier defects,” Acta Neurochirurgica (Supplement) 51, 286–288 (1990).Google Scholar
  9. M. Schröder, J. P. Muizelaar, R. Bullock, J. B. Salvant, and J. T. Povlishock, “Focal ischemia due to traumatic contusions, documented by SPECT, stable Xenon CT, and ultrastructural studies,” J Neurosurg. 82, 966–971 (1995).CrossRefGoogle Scholar
  10. A. Alavi, R. Dann, J. Chawluk, et al., “Positron emission tomography imaging of regional cerebral glucose metabolism,” Seminars in Nuclear Medicine 16, 2–34 (1996).CrossRefGoogle Scholar
  11. W. D. Heiss, O. Pawlik, K. Herholz et al., “Regional kinetic constants and cerebral metabolic rate for glucose in normal human volunteers determined by dynamic positron emission tomography of [18F]-2-fluoro-2-deoxy-D-glucose,” J. Cereb. Blood Flow Metab. 3, 250–253 (1984).Google Scholar
  12. L. P. Carter, “Surface monitoring of cerebral cortical blood flow,” Cerebrovasc. Brain Metab. Rev. 3, 246–261 (1991).Google Scholar
  13. C. A. Dickman, L. P. Carter, H. Z. Baldwin et al., “Technical report. Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma,” Neurosurgery 28, 467–472 (1991).CrossRefGoogle Scholar
  14. O. Sakurada, C. Kennedy, J. Jehle, J. D. Brown, G. L. Carbin, “Sokoloff measurement of local cerebral blood flow with iodo [14C] antipyrine,” Am. J. Physiol. 234, H59–66 (1978).CrossRefGoogle Scholar
  15. D. S. Williams, J. A. Detre, J. S. Leigh et al., “Magnetic resonance imaging of perfusion using spin inversion of arterial water,” Proc. Natl. Acad. Sci. USA 89, 212–216 (1992).ADSCrossRefGoogle Scholar
  16. F. Calamante, D. L. Thomas, G. S. Pell, J. Wiersma, and R. Turner, “Measuring cerebral blood flow using magnetic resonance imaging techniques,” J. Cereb. Blood Flow Metab. 19, 701–735 (1999).CrossRefGoogle Scholar
  17. A. F. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–329 (1981).ADSCrossRefGoogle Scholar
  18. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174–179 (1996).ADSCrossRefGoogle Scholar
  19. K. Yaoeda, M. Shirakashi, S. Funaki, H. Funaki, T. Nakatsue, and H. Abe, “Measurement of microcirculation in the optic nerve head by laser speckle flowgraphy and scanning laser Doppler flowmetry,” Am. J. Ophthalmol. 129, 734–739 (2000).CrossRefGoogle Scholar
  20. B. Ruth, “Measuring the steady-state value and the dynamics of the skin blood flow using the non-contact laser speckle method,” Med. Eng. Phys. 16, 105–111 (1994).CrossRefGoogle Scholar
  21. A. K. Dunn, H. Bolay, M. A. Moskowitz, and D. A. Boas, “Dynamic imaging of cerebral blood flow using laser speckle,” J. Cereb. Blood Flow Metab. 21, 195–201 (2001).CrossRefGoogle Scholar
  22. H. Bolay, U. Reuter, A. K. Dunn, Z. Huang, D. A. Boas, and A. M. Moskowitz, “Intrinsic brain activity triggers trigeminal meningeal afferernts in a migraine model,” Nat. Med. 8, 136–142 (2002).CrossRefGoogle Scholar
  23. J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688–1700 (1965).CrossRefGoogle Scholar
  24. R. Bonner and R. Nossal, “Model for laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).ADSCrossRefGoogle Scholar
  25. Z. Wang, Q. M. Luo, H. Y. Cheng, W. H. Luo, H. Gong, and Q. Lu, “Blood flow activation in rat somatosensory cortex under sciatic nerve stimulation revealed by laser speckle imaging,” Prog. Nat. Sci. (accepted).Google Scholar
  26. R. Greger and U. Windhorst, Comprehensive Human Physiology (Springer-Verlag, Berlin, 1996), 561–578.CrossRefGoogle Scholar
  27. A. C. Ngai, J. R. Meno, and H. R. Winn, “Simultaneous measurements of pial arteriolar diameter and Laser-Doppler Flow during somatosensory stimulation,” J. Cereb. Blood Flow Metab. 15, 124–127 (1995).CrossRefGoogle Scholar
  28. A. C. Silva, S. Lee, G. Yang, C. Iadecola, and S. Kim, “Simultaneous blood oxygenation level-dependent and cerebral blood flow function magnetic resonance imaging during forepaw stimulation in the rat,” J. Cereb. Blood Flow Metab., 19, 871–879 (1999).CrossRefGoogle Scholar
  29. T. Matsuura and I. Kanno, “Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats,” Neurosci. Res. 40, 281–290 (2001).CrossRefGoogle Scholar
  30. D. Kleinfeld, P. P. Mitra, F. Helmchen, and W. Denk, “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).ADSCrossRefGoogle Scholar
  31. M. E. Raichle, “Neuroenergetics: relevance for functional brain imaging” in Human Frontier Science Program (Strasbourg, Bureaux Europe, 2001), 65–68.Google Scholar
  32. R. D. Hall and E. P. Lindholm, “Organization of motor and somatosensory neocortex in the albino rat,” Brain Res. 66, 23–28 (1974).CrossRefGoogle Scholar
  33. A. C. Ngai, K. R. Ko, S. Morii, and H. R. Winn, “Effects of sciatic nerve stimulation on pial arterioles in rats,” Am. J. Physiol. 269, H133–H139 (1988).Google Scholar
  34. A. C. Ngai, M. A. Jolley, R. D'Ambrosio J. R. Meno, and H. R. Winn, “Frequency-dependent changes in cerebral blood flow and evoked by potentials during somatosensory stimulation in the rat,” Brain Res. 837, 221–228 (1999).CrossRefGoogle Scholar
  35. J. A. Detre, B. M. Ances, K. Takahashi, and J. H. Greenberg, “Signal averaged Laser Doppler measurements of activation-flow coupling in the rat forepaw somatosensory cortex,” Brain Res. 796, 91–98 (1998).CrossRefGoogle Scholar
  36. R. Steinmeier, I. Bondar, C. Bauhuf, and R. Fahlbusch, “Laser Doppler flowmetry mapping of cerebrocortical microflow characteristics and limitations,” NeuroImage 15, 107–119 (2002).CrossRefGoogle Scholar
  37. G. Taubes, “Play of light opens a new window into the body,” Science 27, 1991–1993 (1997).CrossRefGoogle Scholar
  38. A. N. Bashkatov, E. A. Genina, V. I. Kochubey, Y. P. Sinichkin, A. A. Korobov, N. A. Lakodina, and V. V. Tuchin, “In vitro study of control of human dura mater optical properties by acting of osmotical liquids,” Proc SPIE 4162, 182–188 (2000).ADSCrossRefGoogle Scholar
  39. A. N. Bashkatov, E. A. Genina, Yu. P. Sinichkin, V. I. Kochubey, N. A. Lakodina, and V. V. Tuchin, “Glucose and mannitol diffusion in human dura mater,” Biophys. J. 85, 3310–3318 (2003).CrossRefGoogle Scholar
  40. E. Chan, B. Sorg, D. Protsenko, M. O'Neil, M. Motamedi, and A. J. Welch, “Effects of compression on soft tissue optical properties,” IEEE J. Select. Topics Quant. Electr. 2, 943–950 (1997).ADSCrossRefGoogle Scholar
  41. I. F. Cilesiz and A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of the human aorta,” Appl. Opt. 32, 477–487 (1993).ADSCrossRefGoogle Scholar
  42. V. V. Tuchin, I. L. Maksimova, D. A. Zimnyakov, I. L. Kon, A. K. Mavlutov, and A. A. Mishin, “Light propagation in tissues with controlled optical properties,” J. Biomed. Opt. 2, 401–417 (1997).ADSCrossRefGoogle Scholar
  43. A. N. Bashkatov, I. L. Maksimova, T. N. Semyonova, V. V. Tuchin, and I. L. Kon, “Controlling of optical properties of sclera,” Proc. SPIE 2393, 137–141 (1995).ADSCrossRefGoogle Scholar
  44. B. Nemati, A. Dunn, A. J. Welch, and H. G. Rylander, “Optical model for light distribution during transscleral cyclophotocoagulation,” App. Opt. 37, 764–771 (1998).ADSCrossRefGoogle Scholar
  45. G. Vargas, E. K. Chan, J. K. Barton, H. G. Rylander, and A. J. Welch, “Use of an agent to reduce scattering in skin,” Lasers Surg. Med. 24, 133–141 (1999).CrossRefGoogle Scholar
  46. G. Vargas, K. F. Chan, S. L. Thomsen, and A. J. Welch, “Use of osmotically active agents to alter optical properties of tissue: effects on the detected fluorescence signal measured through skin,” Lasers Surg Med. 29, 213–220 (2001).CrossRefGoogle Scholar
  47. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, J. Cen, and W. X. Liang, “Optical dynamic imaging of the regional blood flow in the rat mesentery under the effect of noradrenalin,” Prog. Nat. Sci. 13, 198–201 (2003).Google Scholar
  48. H. Y. Cheng, Q. M. Luo, Z. Wang, and S. Q. Zeng, “Laser speckle imaging system of monitoring the regional velocity distribution,” Chinese J. Sci. Instr. (accepted).Google Scholar
  49. E. I. Galanzhal, V. V. Tuchin, A. V. Solovieva, T. V. Stepanova, Q. M. Luo, and H. Y. Cheng, “Skin backreflectance and microvascular system functioning at the action of osmotic agents,” J. Phys. D: Appl. Phys. 36, 1739–1746 (2003).ADSCrossRefGoogle Scholar
  50. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1, 200–211 (1996).ADSCrossRefGoogle Scholar
  51. Y. R. Tran Dinh, C. Thurel, A. Serrie, G. Cunin, and J. Seylaz, “Glycerol injection into the trigeminal ganglion provokes a selective increase in human cerebral blood flow,” Pain 46, 13–16 (1991).CrossRefGoogle Scholar
  52. E. Jungermann and N. O. V. Sonntag, Glycerine: a Key Cosmetic Ingredient (New York, Marcel Dekker, 1991).Google Scholar
  53. J. B. Segur, “Uses of glycerine” in Glycerol, C. S. Miner and N. N. Dalton eds. (Reinhold Publishing, New York, 1953), 238–330.Google Scholar
  54. A. Grinvald, R. D. Frostig, R. M. Siegel, and E. Bartfeld, “High-resolution optical imaging of functional brain architecture in the awake monkey,” Proc. Natl. Acad. Sci. USA 88, 11559–11563 (1991).ADSCrossRefGoogle Scholar
  55. L. M. Chen, B. Heider, G. V. Williams, F. L. Healy, B. M. Ramsden, and A. W. Roe, “A chamber and artificial dura method for long-term optical imaging in the monkey,” J. Neurosci. Meth. 113, 41–49 (2002).CrossRefGoogle Scholar
  56. H. Y. Cheng, Q. M. Luo, S. Q. Zeng, S. B. Chen, J. Cen, and H. Gong, “A modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. (accepted).Google Scholar
  57. H. Y. Cheng, D. Zhu, Q. M. Luo, S. Q Zeng, Z. Wang, and S. S. Ul'yanov, “Optical monitoring of the dynamic change of blood perfusion,” Chinese J. Lasers 30, 668–672 (2003) (in Chinese).Google Scholar
  58. J. Ohtsubo and T. Asakura, “Velocity measurement of a diffuse object by using time-varying speckles,” Opt. Quant. Electron. 8, 523–529 (1976).ADSCrossRefGoogle Scholar
  59. J. D. Briers, “Laser Doppler and time-varying speckle: reconciliation,” J. Opt. Soc. Am. A. 13, 345–350 (1996).ADSCrossRefGoogle Scholar
  60. P. S. Liu, The optical bases of speckle statistic (Science Press, Beijing, 1987) (in Chinese)Google Scholar
  61. M. Linden, H. Golster, S. Bertuglia, A. Colantuoni, F. Sjoberg, and G. Nilsson, “Evaluation of enhanced high-resolution laser Doppler imaging in an in vitro tube model with the aim of assessing blood flow in separate microvessel,” Microvasc. Res. 56, 261–270 (1998).CrossRefGoogle Scholar
  62. D. Kleinfeld, P. P. Mitra, F. Helmchen and W. Denk. “Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex,” Proc. Natl. Acad. Sci. USA 95, 15741–15746 (1998).ADSCrossRefGoogle Scholar
  63. A. Serov, W. Steenbergen, and F. D. Mul, “Laser Doppler perfusion with a complimentary metal oxide semiconductor image sensor,” Opt. Lett. 27, 300–302 (2002).fADSCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Qingming Luo
    • 1
  • Haiying Cheng
    • 1
  • Zheng Wang
    • 1
  • Valery V. Tuchin
    • 2
  1. 1.Huazhong University of Science and TechnologyWuhanP.R. China
  2. 2.Saratov State UniversitySaratovRussian Federation

Personalised recommendations