Skip to main content

Self-Assembling Peptides for Vaccine Development and Antibody Production

  • Living reference work entry
  • First Online:
Handbook of Macrocyclic Supramolecular Assembly
  • 372 Accesses

Abstract

Self-assembling peptides have shown great potential for drug delivery, cancer cell inhibition, and regenerative medicine. Recently studies indicate that they are also promising for subunit vaccine delivery. We summarize in this tutorial review two strategies to deliver subunit vaccines, one by covalently conjugating and the other one by physically mixing. By the former strategy, protein and peptide antigens are covalently connected with self-assembling peptides, and the resulting peptides can self-assemble into nanofibers by themselves or by mixing with the original self-assembling peptides. For the latter one, antigens including DNA, proteins, and attenuated cells physically interact with nanofibers of self-assembling peptides via charge interaction, hydrogen bonding, hydrophobic interaction, etc. Both strategies can prolong the lifetime of subunit vaccines at injection sites, assist antigen uptake by antigen-presenting cells (APCs), facilitate transportation of antigens from injection sites to lymph nodes, and stimulate downstream immune responses. Vaccines based on self-assembling peptides can raise stronger antibody productions, which is useful for protective vaccine development and antibody production. Besides, several vaccines capable of eliciting strong CD8+ T-cell response are also introduced in this paper, and they are promising for the development of vaccines to treat important diseases such as cancers and HIV. Challenges remained are also discussed in the last section of the paper. Overall, self-assembling peptides are very useful for antibody production and the development of novel vaccines to treat important diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Plotkin SA (2005) Vaccines: past, present and future. Nat Med 11:S5–S11

    Article  CAS  PubMed  Google Scholar 

  2. Rappuoli R, Aderem A (2011) A 2020 vision for vaccines against HIV, tuberculosis and malaria. Nature 473:463–469

    Article  CAS  PubMed  Google Scholar 

  3. Germain RN (2010) Vaccines and the future of human immunology. Immunity 33:441–450

    Article  CAS  PubMed  Google Scholar 

  4. Reed SG, Bertholet S, Coler RN et al (2009) New horizons in adjuvants for vaccine development. Trends Immunol 30:23–32

    Article  CAS  PubMed  Google Scholar 

  5. Bachmann MF, Jennings GT (2010) Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns. Nat Rev Immunol 10:787–796

    Article  CAS  PubMed  Google Scholar 

  6. Goldberg MS (2015) Immunoengineering: how nanotechnology can enhance cancer immunotherapy. Cell 161:201–204

    Article  CAS  PubMed  Google Scholar 

  7. Hu C-MJ, Fang RH, Luk BT et al (2013) Nanoparticle-detained toxins for safe and effective vaccination. Nat Nanotechnol 8:933–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Moon JJ, Suh H, Bershteyn A et al (2011) Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nat Mater 10:243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Collier JH, Rudra JS, Gasiorowski JZ et al (2010) Multi-component extracellular matrices based on peptide self-assembly. Chem Soc Rev 39:3413–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Du X, Zhou J, Shi J et al (2015) Supramolecular hydrogelators and hydrogels: from soft matter to molecular biomaterials. Chem Rev 115:13165–13307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ulijn RV (2015) Molecular self-assembly. Best of both worlds. Nat Nanotechnol 10:295–296

    Article  CAS  PubMed  Google Scholar 

  12. Zelzer M, Ulijn RV (2010) Next-generation peptide nanomaterials: molecular networks, interfaces and supramolecular functionality. Chem Soc Rev 39:3351–3357

    Article  CAS  PubMed  Google Scholar 

  13. Versluis F, van Esch JH, Eelkema R (2016) Synthetic self-assembled materials in biological environments. Adv Mater 28:4576–4592

    Article  CAS  PubMed  Google Scholar 

  14. Tao K, Levin A, Adler-Abramovich L et al (2016) Fmoc-modified amino acids and short peptides: simple bio-inspired building blocks for the fabrication of functional materials. Chem Soc Rev 45:3935–3953

    Article  CAS  PubMed  Google Scholar 

  15. Yuan Y, Wang L, Du W et al (2015) Intracellular self-assembly of Taxol nanoparticles for overcoming multidrug resistance. Angew Chem Int Ed 54:9700–9704

    Article  CAS  Google Scholar 

  16. Zhao F, Ma ML, Xu B (2009) Molecular hydrogels of therapeutic agents. Chem Soc Rev 38:883–891

    Article  CAS  PubMed  Google Scholar 

  17. Luo Z, Zhang S (2012) Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem Soc Rev 41:4736–4754

    Article  CAS  PubMed  Google Scholar 

  18. Boekhoven J, Stupp SI (2014) 25th anniversary article. Supramolecular materials for regenerative medicine. Adv Mater 26:1642–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang Y, Cheetham AG, Angacian G et al (2017) Peptide–drug conjugates as effective prodrug strategies for targeted delivery. Adv Drug Deliver Rev 110:112–126

    Article  Google Scholar 

  20. Wen Y, Collier JH (2015) Supramolecular peptide vaccines: tuning adaptive immunity. Curr Opin Immunol 35:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rudra JS, Tian YF, Jung JP et al (2010) A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci 107:622–627

    Article  CAS  PubMed  Google Scholar 

  22. Chen J, Pompano RR, Santiago FW et al (2013) The use of self-adjuvanting nanofiber vaccines to elicit high-affinity B cell responses to peptide antigens without inflammation. Biomaterials 34:8776–8785

    Article  CAS  PubMed  Google Scholar 

  23. Rudra JS, Mishra S, Chong AS et al (2012) Self-assembled peptide nanofibers raising durable antibody responses against a malaria epitope. Biomaterials 33:6476–6484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rudra JS, Sun T, Bird KC et al (2012) Modulating adaptive immune responses to peptide self-assemblies. ACS Nano 6:1557–1564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hudalla GA, Sun T, Gasiorowski JZ et al (2014) Gradated assembly of multiple proteins into supramolecular nanomaterials. Nat Mater 13:829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cui H, Webber MJ, Stupp SI (2010) Self-assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu X, Ramos TV, Gras-Masse H et al (2004) Lipopeptide epitopes extended by an Nϵ-palmitoyl-lysine moiety increase uptake and maturation of dendritic cells through a toll-like receptor-2 pathway and trigger a Th1-dependent protective immunity. Eur J Immunol 34:3102–3114

    Article  CAS  PubMed  Google Scholar 

  28. Black M, Trent A, Kostenko Y et al (2012) Self-assembled peptide Amphiphile micelles containing a cytotoxic T-cell epitope promote a protective immune response in vivo. Adv Mater 24:3845–3849

    Article  CAS  PubMed  Google Scholar 

  29. Manolova V, Flace A, Bauer M et al (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 38:1404–1413

    Article  CAS  PubMed  Google Scholar 

  30. Singh A, Peppas NA (2014) Hydrogels and scaffolds for immunomodulation. Adv Mater 26:6530–6541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bencherif SA, Sands RW, Ali OA et al (2015) Injectable cryogel-based whole-cell cancer vaccines. Nat Commun 6:7556

    Google Scholar 

  32. Medina SH, Li S, Howard OZ et al (2015) Enhanced immunostimulatory effects of DNA-encapsulated peptide hydrogels. Biomaterials 53:545–553

    Article  CAS  PubMed  Google Scholar 

  33. Tian Y, Wang H, Liu Y et al (2014) A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. Nano Lett 14:1439–1445

    Article  CAS  PubMed  Google Scholar 

  34. Wang H, Luo Z, Wang Y et al (2016) Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Adv Funct Mater 26:1822–1829

    Article  CAS  Google Scholar 

  35. Yewdell JW (2010) Designing CD8+ T cell vaccines: it’s not rocket science. Curr Opin Immunol 22:402–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Raeburn J, Cardoso AZ, Adams DJ (2013) The importance of the self-assembly process to control mechanical properties of low molecular weight hydrogels. Chem Soc Rev 42:5143–5156

    Article  CAS  PubMed  Google Scholar 

  37. Luo Z, Wu Q, Yang C et al (2017) A powerful CD8+ T-cell stimulating D-tetra-peptide hydrogel as a very promising vaccine adjuvant. Adv Mater 29:1601776

    Article  Google Scholar 

  38. Macher BA, Galili U (2008) The Galα1, 3Galβ1, 4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance. Biochim Biophys Acta 1780:75–88

    Article  CAS  PubMed  Google Scholar 

  39. Zhao F, Heesters BA, Chiu I et al (2014) L-Rhamnose-containing supramolecular nanofibrils as potential immunosuppressive materials. Org Biomol Chem 12:6816–6819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johansen P, Storni T, Rettig L et al (2008) Antigen kinetics determines immune reactivity. Proc Natl Acad Sci USA 105:5189–5194

    Article  CAS  PubMed  Google Scholar 

  41. Boekhoven J, Hendriksen WE, Koper GJ et al (2015) Transient assembly of active materials fueled by a chemical reaction. Science 349:1075–1079

    Article  CAS  PubMed  Google Scholar 

  42. Wang J, Liu K, Xing R et al (2016) Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev 45:5589–5604

    Article  CAS  PubMed  Google Scholar 

  43. Tantakitti F, Boekhoven J, Wang X et al (2016) Energy landscapes and functions of supramolecular systems. Nat Mater 15:469–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hirst AR, Roy S, Arora M et al (2010) Biocatalytic induction of supramolecular order. Nat Chem 2:1089–1094

    Article  CAS  PubMed  Google Scholar 

  45. Guy B (2007) The perfect mix: recent progress in adjuvant research. Nat Rev Microbiol 5:505–517

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Shi or Zhimou Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, Z., Wang, Y., Gao, J., Shi, Y., Yang, Z. (2019). Self-Assembling Peptides for Vaccine Development and Antibody Production. In: Liu, Y., Chen, Y., Zhang, HY. (eds) Handbook of Macrocyclic Supramolecular Assembly . Springer, Singapore. https://doi.org/10.1007/978-981-13-1744-6_63-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-1744-6_63-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-1744-6

  • Online ISBN: 978-981-13-1744-6

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics